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Abstract

Topological rainbow trapping (TRT) arises from the interplay between 
topological states and frequency-dependent slow-wave effects. Waves 
first slow down, then become spatially separated by frequency and 
are ultimately trapped at distinct locations. TRT designs have been 
primarily explored in the context of photonic crystals and subsequently 
extended to acoustic and elastic systems. This emerging TRT concept 
enables robust, frequency-selective localization beyond conventional 
rainbow trapping, supporting compact, multi-wavelength, topologically 
protected platforms for extreme wave manipulation. In this Review, 
we elucidate the fundamental principles of TRT, emphasizing the 
physical mechanisms that create near-zero group velocity points with 
robust frequency-dependent localization. We highlight three key TRT 
mechanisms: graded index profiles, which gradually vary material 
parameters to reshape dispersion and induce slow-wave effects; 
higher-order topological corner modes, which exploit localized corner 
states for robust frequency-specific wave confinement; and synthetic 
dimensions, which expand the parameter space of the system to engineer 
stable interface states at distinct frequencies. Furthermore, we address 
key challenges in TRT, such as energy dissipation and tunability, while 
highlighting its broad range of potential applications. Finally, we discuss 
emerging research directions for TRT.
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and fabrication errors. This challenge has inspired researchers to 
explore more robust wave manipulation mechanisms, including top-
ological photonics10–12. Topological photonics leverages concepts 
from a branch of mathematics that deals with properties of structures 
invariant under continuous deformation to engineer optical materials 
and structures with remarkable robustness against defects13–15. By inte-
grating topological concepts into photonic systems, researchers have 
realized phenomena, including robust edge16–18 and corner states19–21, 
topological phase transitions22–24 and non-reciprocal propagation of 
light25–27. Such phenomena provide a method to create optical systems 
that are inherently resilient to defects and disorder, which facilitates 
efficient and reliable wave transport28–30.

At the core of topological photonics is the Berry curvature — a 
fundamental geometric property of Bloch bands that significantly 
influences wave propagation dynamics, modifies group velocity and 
enables robust slow-light effects. Understanding this topological 
influence extends traditional rainbow trapping into the framework of 
topological rainbow trapping (TRT).

In photonic crystals (PCs), the periodic modulation of the refrac-
tive index creates band structures analogous to electronic systems. 
The geometric properties of Bloch eigenstates are described by  
the Berry connection k i u u( ) = ,|,∇ ,|,n knk nkA  and Berry curvature 

k kΩ ( ) = ∇ × ( )n k nA , in which unk represents the periodic part of the Bloch 
function for the nth band31,32. This curvature acts as an effective mag-
netic field in momentum space that alters photon dynamics. Integrat-
ing the Berry curvature over the entire Brillouin zone (BZ) yields the 
Chern number, C k k= Ω ( )dn n

1
2π BZ

2∫  (ref. 33). A non-zero Chern number 
(topological invariant) indicates the presence of robust, unidirectional 
topological edge states, which are immune to backscattering caused 
by structural imperfections28,34,35.

Berry curvature introduces an anomalous velocity term into the 
semiclassical equations governing electron dynamics. This effect was 
first identified in ref. 36 and has since been extensively studied across 
a range of physical systems, including magnetic Bloch bands37, ultra-
cold gases38, liquid crystal microcavity with 2D perovskite39 and non-
Hermitian systems under complex electric fields40. The resulting group 
velocity correction can be expressed as k E k E kv ( ) = ∇ ( ) − e × Ω ( )n k n n , in 
which E k( )n  is the energy dispersion, E V r= −∇ ( ) represents the exter-
nally applied electric field and eE  represents the resulting force. The 
first term E k∇ ( )k n  describes the conventional group velocity in periodic 
systems, whereas the second term eE k− × Ω ( )n  reflects the anomalous 
velocity from Berry curvature kΩ ( )n , whose orientation is transverse 
to the applied field31,41,42. This anomalous velocity becomes pronounced 
near band extrema or in regions with strong Berry curvature, which 
strongly influences transport behaviour43. Such conditions have been 
explored in electronic phenomena, including the anomalous Hall 
effect44,45 and spin Hall effect46, which fundamentally alter transport 
dynamics31, and in systems subject to strain gradients or structural 
modifications47,48. An analogous anomalous velocity correction has 
also been observed in optical media49, where it manifests as a velocity 
component perpendicular to refractive index gradients41,50.

In topological PCs, the group velocity equation follows an analogous 
form: v ω k k V= ∇ ( ) + Ω( ) × ∇ (r)k rg ext , in which ω k( ) is the photonic disper-
sion relation, and V (r)ext  represents external perturbations such as refrac-
tive index gradients or electromagnetic field profiles. This correction 
reflects the influence of the Berry curvature on wave dynamics, mirroring 
the behaviour in electronic systems. By carefully engineering Berry 
curvature distribution in a topological photonic system, one can modify 
the dispersion relation from ω(k) to ω(k) + Ω(k), thereby manipulating 

Key points

 • Topological rainbow trapping (TRT) combines slow-wave effects 
with topological protection to achieve robust, frequency-selective 
localization in photonic, acoustic and elastic systems.

 • TRT relies on Berry curvature, which induces anomalous velocity 
that reshapes wavepacket dynamics and enables near-zero group 
velocity localization through either external gradients or intrinsic band 
structure engineering via topological invariants.

 • Graded index profiles, higher-order topological corner modes and 
synthetic dimensions are key mechanisms that facilitate the realization 
of TRT.

 • Advances in complex-frequency excitations enable dynamic 
tunability and loss mitigation, potentially extending TRT to ultrafast, 
reconfigurable and broadband wave-based devices.

 • Future research directions include integration with plasmonics, 
quantum optics and inverse design, which could open new platforms 
for tunable, broadband and adaptive wave control.

Introduction
Rainbow trapping describes a phenomenon in which waves spanning a 
broad range of frequencies are simultaneously decelerated or stopped 
within a linear, time-invariant system. Each frequency component is 
localized at a distinct spatial position, a process known as spatial demul-
tiplexing. Rainbow trapping can be achieved in guiding structures 
whose widths vary adiabatically, either linearly or in other functional 
forms, along the propagation direction. Although it was initially pro-
posed for electromagnetic waves1, rainbow trapping has been general-
ized and demonstrated across various wave types, including acoustic2, 
elastic3, mechanical4, water5 and seismic6 waves. For each type of wave, 
the phenomenon can usually be observed in two classes of structures, 
which are defined by the size of the structural elements relative to the 
operating wavelength.

Plasmonic and metamaterial structures rely on unit elements that 
are considerably smaller than the wavelength. In these cases, rainbow 
trapping is achieved by designing materials with contrasting material 
parameters (for electromagnetic waves, the refractive index or the 
permittivity) that induce opposite power flows in different regions, 
which ultimately reduces the energy velocity, even to zero, resulting 
in strong wave confinement (Fig. 1a). Similarly, graded subwavelength 
structures with spatially varying width or depth can also modify local 
dispersion, enabling frequency localization at distinct positions. The 
second option is periodic structures, such as photonic, acoustic and 
elastic crystals with periodic elements on the order of the operating 
wavelength. In these structures, rainbow trapping occurs through 
Bragg scattering and material dispersion. Chirped, graded or tapered 
periodic geometries can modify the band structure to flatten the dis-
persion curve, causing the group velocity v ω k= d /dg  to approach zero 
at specific points (Fig. 1c). This mechanism is responsible for slow-wave 
states7–9 and enables frequency-dependent spatial localization, which 
is a key feature of rainbow trapping.

Although rainbow trapping offers an effective method for wave 
control, its performance can be sensitive to structural imperfections 
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the effective group velocity, and achieve conditions similar to flat-band 
behaviour, corresponding to near-zero group velocity (Fig. 1b). Although 
Berry curvature may not always flatten the band directly, it introduces 
an anomalous velocity term that can create a near-zero effective velocity 
even in systems without inherently flat bands. This mechanism offers 
new possibilities to confine light, enhance slow-light effects and improve 
energy localization in photonic structures.

TRT is a concept that merges the robustness of topological 
photonics51–53 with efficient frequency separation and slow-wave 

effects54–56. Unlike traditional rainbow trapping, which relies on 
material or geometric dispersion shaping and is often sensitive to 
disorder, TRT leverages topological invariants, such as the Chern 
number, to design band structures that support zero-group veloc-
ity states, ensuring robust and spectrally multiplexed localization 
immune to fabrication imperfections. Early studies are primarily 
focused on theoretical designs and proof-of-concept demonstra-
tions of TRT in photonic platforms57,58. However, the field has rapidly 
evolved, with recent experimental studies extending TRT across 
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Fig. 1 | From rainbow trapping to topological rainbow trapping. a, In tapered 
plasmonic structures, rainbow trapping is achieved by engineering opposite-sign 
permittivity in metals (εm) and dielectrics (εd) to induce counter-propagating 
power flows while gradually varying the geometry to reduce the net energy 
velocity and spatially localize different frequencies. In graded subwavelength 
metamaterials, spatially varying width or depth of the unit elements modifies 
local dispersion, which enables multiple slow-light modes to form at distinct 
frequencies and trapping positions. b, The dispersion relation highlights 
frequency-dependent wave trapping at points of near-zero group velocity. 
Incorporating Berry curvature modifies dispersion as ω ω k( ) → ( ) + Ω( )k k , 
creating topologically robust, frequency-selective trapped states. Blue stars 
denote near-zero velocity points crucial for localization. c, Rainbow trapping in 
periodic structures (photonic, acoustic and elastic) relies on Bragg scattering. 
Chirped, graded or tapered lattice geometries spatially modulate the dispersion, 
creating slow-wave states and enabling frequency separation. d, Topological 
rainbow trapping (TRT) realized via graded index profiles. In Hermitian systems 

(top and middle panels), external gradients are introduced at a pre-existing 
topological interface to reshape local dispersion, whereas intrinsic gradients 
arise directly from the topological band structure without requiring external 
perturbations. In non-Hermitian systems (bottom panel), spatial variations in 
the imaginary part of the refractive index introduce graded loss profiles that 
similarly control dispersion and enhance spatial localization. e, TRT realized 
via higher-order topological corner modes. Frequency-specific localization 
occurs at spatially separated cavities (corners) by modulating intra-cell (t1) and 
inter-cell (t2) coupling strengths or by local geometric corners deformation, 
forming a discretized robust rainbow. f, TRT realized using synthetic dimensions. 
Introducing an additional synthetic parameter ξ  (unit-cell displacement 
from undeformed U0 to deformed ξU ) expands the 2D parameter space to a 
3D parameter space (two spatial dimensions and one synthetic dimension), 
enabling robust, frequency-dependent interface states without requiring 
physical refractive index gradients.
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diverse wave-based systems from PCs59–61 to acoustic62–64, elastic65–67 
and non-Hermitian media68. Additionally, there is an emerging trend 
to move TRT from passive dispersion control to active, tunable and  
integrated devices.

TRT is achieved by spatially varying a parameter that induces a 
topological phase transition, such as refractive index profile, unit-cell 
geometry or coupling strength, which creates a continuous gradient 
of interface states. Each of these topological interface states is pinned 
to a distinct spatial location, forming a stable ‘topological rainbow’, 
in which individual frequency components are localized at specific 
positions along the interface57,62,69,70. This mechanism relies on regions 
that are engineered to have distinct topological properties, which 
enables frequency-selective trapping through controlled topological 
bandgap modulation. As the topologically protected modes are guar-
anteed by the underlying topological invariants, these localized states 
are inherently robust against structural imperfections, backscattering 
and environmental disturbances.

This Review provides a comprehensive overview of the funda-
mental principles of TRT, with a focus on the topological mechanisms 
that enable its formation. We explore how graded index profiles, 
higher-order topological corner states and synthetic dimensions 
contribute to the realization of TRT, particularly in PCs, and extend 
the discussion to acoustic and elastic wave systems. Additionally, we 
address key challenges related to energy dissipation and tunability, 
highlighting recent advancements aimed to overcome these limita-
tions. This Review also seeks to establish the potential of TRT in opti-
cal information processing, energy harvesting and next-generation 
wave-based sensing and computing technologies.

Design principles for TRT
As highlighted in Fig. 1, TRT can be realized through various strategies, 
each based on different physical mechanisms. Broadly, TRT emerges 
through two distinct pathways that combine topological protection 
with slow-light effects. The following section discusses these two design 
pathways in detail.

Introducing the slow-light rainbow effect into structures with 
topological states
The slow-light rainbow effect can be introduced to systems that already 
support topologically protected states by applying external gradients, 
such as graded refractive index profiles, material inhomogeneities or 
geometric tapering. These gradients reshape the local dispersion, lead-
ing to points with near-zero group velocity at which specific frequency 
components become spatially localized. Although the topological 
states enhance robustness, the slow-light behaviour itself arises from 
the engineered gradient rather than from intrinsic topological fea-
tures. Thus, the resulting frequency-dependent localization can be 
called a topological trapped rainbow, which is supported by robust 
interface modes.

This approach offers a relatively straightforward and flexible 
design route. However, it comes with certain trade-offs: the length 
of the gradient region limits how many frequencies can be spatially 
resolved, and steep gradients may break adiabaticity, leading to 
scattering or incomplete trapping. Furthermore, if the refractive 
index modulation pushes the localized states near the bandgap 
edge, it can introduce coupling with bulk modes or induce non-
topological backscattering. Therefore, careful design is essential to 
ensure robust frequency-selective localization while preserving the 
topological phase.

Designing a topological state with a slow-light rainbow effect
The alternative design pathway to achieving TRT is to engineer the 
topological properties themselves to induce a slow-light rainbow 
effect that arises intrinsically from the band structure. In this scenario, 
topological invariants govern the group velocity, allowing zero-group 
velocity points to form naturally without the need to introduce external 
gradients. The dispersion is modified directly through its topological 
design, enabling different frequencies to localize at distinct spatial 
positions, forming a pure topological trapped rainbow.

A representative example involves topological insulator hetero-
structures, in which domain walls between regions with different struc-
tural parameters, although not necessarily different Chern numbers, 
support continuously shifting localized edge states in a single bandgap. 
These states exhibit frequency-dependent confinement while retaining 
topological protection as long as the bandgap remains open. A related 
mechanism was demonstrated in ferrimagnetic PCs, in which multiple 
Dirac and quadratic degeneracies were lifted to produce a bandgap 
and generate non-zero Chern numbers. The associated Berry flux 
contributions are added constructively, which increases the net Chern 
number53,71,72. In such systems, spatially varying the Chern number by 
creating domain walls between regions with distinct topological phases 
forms heterostructures that support frequency-dependent edge states. 
Although this also enables frequency separation, TRT achieves a more 
continuous and robust frequency gradient by guiding localized modes 
within a single, unbroken topological phase without requiring multiple 
bandgaps or Chern number transitions.

In summary, both design principles can realize TRT, but the latter, 
based on intrinsic topological design, offers a more fundamental and 
robust path to efficient slow-light behaviour without introducing exter-
nal structural perturbations. Crucially, because these trapped modes 
are topological in origin, they are highly resistant to scattering and 
disorder. This protection ensures that, as long as the bandgap remains 
open and the topological phase is preserved, the trapped modes remain 
decoupled from radiative or bulk propagating states. Both strategies 
enable the design of TRT across photonic, acoustic and elastic systems.

TRT in photonic crystals
One of the most widely used platforms to design and realize TRT is PCs, 
which leverages the interplay between topologically protected states 
and spatially modulated dispersion. In PCs, the periodic variations of 
the refractive index lead to the formation of photonic band structures73. 
The electric field satisfies the Bloch wave condition, resulting in a dis-
persion relation ω k( ) that defines the group velocity and energy flow. 
By introducing gradual variations in refractive index or unit-cell geom-
etry, the local dispersion can be systematically tuned, creating spatial 
regions where the group velocity approaches zero. This enables effec-
tive light trapping at well-defined positions within the structure. In the 
following sections, we discuss key mechanisms to achieve TRT in PCs, 
including the use of graded index profiles, higher-order topological 
corner modes (HOTCMs) and synthetic dimensions.

Graded index profiles
In Hermitian systems, introducing an external or intrinsic gradient such 
as a spatially varying refractive index can reshape the local dispersion, 
forming controlled slow-light regions (Fig. 1d, top and middle panels). 
TRT can be realized by incorporating graded index profiles, commonly 
done through gradual variation of material parameters such as refractive 
index74–76, density77,78 or stiffness66,69,79 along the propagation direction. 
Such gradual variation alters the local dispersion relation, progressively 
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reducing the group velocity for different frequency components and 
enabling their spatial separation. Unlike abrupt structural discontinui-
ties, these adiabatic transitions suppress scattering and minimize energy 
losses. When integrated with topological states, graded profiles support 
stable wave confinement that is immune to defects. Berry curvature can 
further enhance this effect by manipulating the effective group veloc-
ity and achieving conditions similar to flat-band behaviour, thereby 
improving frequency-dependent localization.

In PCs, graded profiles are typically implemented through gradual 
variations in refractive index or lattice geometry. One notable example 
involves introducing controlled contractions and expansions across 
trivial and nontrivial regions to tune the dispersion characteristics and 

to enable TRT80, as shown in Fig. 2a. This deformation leads to the 
opening of doubly degenerate Dirac cones and the emergence of topo-
logical edge states. In this case, the built-in gradient of the system 
reshapes the local band structure and controls the group velocity 
without relying on external gradients, resulting in the frequency-
dependent localization of spectral components at distinct spatial 
positions. This approach has largely been explored through numerical 
simulations. For example, simulations of all-dielectric triangular-lattice 
PCs demonstrated robust state confinement over 0.6358 − 0.6517 c a/  
(in which c is the speed of light and a is the lattice constant, and c a/  
denotes the normalized frequency) with spatially separated trapping 
across the graded structure.
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Fig. 2 | Photonic topological rainbow trapping based on graded index 
profiles. a, Schematic of a graded topological photonic crystal (PC) formed by 
combining expanded and contracted lattice regions. The resulting refractive 
index gradient induces topological edge states and frequency-selective 
confinement. Frequencies are labelled as normalized c a/ , and |E|2 denotes the 
normalized electric field intensity distribution. Adapted with permission from 
ref. 80, Optica Publishing Group. b, Trivial–nontrivial–trivial PC heterostructure 
with C4-symmetric unit cells, enabling dual-mode topological rainbow trapping 
(TRT). The central region is modified via a geometric tuning parameter Δ applied 
along both the x and y coordinates, inducing geometric deformation between 
unit cells. The corresponding electric field |E| distribution illustrates trapped odd 
(left) and even (right) coupled topological edge states with different frequencies 
given in the corresponding positions at the bottom. Reprinted with permission 

from ref. 81, IOP. c, Gradient valley PC with spatially varying graded domain along 
the interface, demonstrating frequency-dependent localization via valley-locked 
edge states and controlled group velocities. Adapted with permission from 
ref. 82, Optica Publishing Group. d, Quadrupole TRT modes are achieved by 
varying cavity length along a topological waveguide interface. Simulated 
out-of-plane electric field (Ez) distributions verify that the external cavity 
gradient induces robust light trapping at multiple frequencies. Adapted with 
permission from ref. 83, Optica Publishing Group. e, Non-Hermitian TRT in a PC 
with spatially graded loss. The parameter d denotes the thickness of the lossy 
electromagnetic shielding material wrapped around dielectric cylinders to vary 
the local loss profile. Both simulation and experiment confirm that controlled 
loss gradients enable wave localization across multiple frequencies. Adapted 
with permission from ref. 68, Chinese Laser Press.
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Another example studied through simulations involves a trivial–
nontrivial–trivial heterostructure with C4-symmetric unit cells, in which 
the gradual tuning of the central region enabled TRT via odd and even 
coupled topological edge states81 (Fig. 2b). This dual-frequency TRT 
covered 4.038 − 4.556 GHz, with each mode selectively confined at 
distinct spatial locations within the same graded interface. In a related 
approach, a gradient valley PC was designed using asymmetric dielec-
tric rods of relative permittivity (ε = 12) to control group velocity and 
valley dispersion along the interface, enabling frequency-selective 
localization via valley-locked edge states82 (Fig. 2c). This theoretical 
study demonstrated TRT over the frequency range 0.5392 − 0.5501 c/a, 
with spatially separated valley modes confined along the graded 
domain.

TRT can also be induced through cavity-based designs. In this 
approach, the edge lengths of dielectric cavities are intentionally 
modified to create geometric defects in a periodic lattice. These 
defected cavity lengths are gradually varied along a topological wave-
guide interface83 (Fig. 2d), introducing spatial grading that modulates 
coupling between neighbouring cavities and enables control over light 
localization and group velocity. This numerical work combined a topo-
logical waveguide with length-graded square dielectric cavities to 
realize dipole and quadrupole mode trapping; as cavity lengths reached 

a3  or greater, the group velocity was reduced to near zero, resulting in 
strong confinement and flat bands. Localized out-of-plane electric 
field distributions were observed at frequencies of 0.519 c/a, 0.5316 
c/a and 0.545 c/a, corresponding to distinct spatial trapping. Here, the 
slow-light rainbow effect emerged from graded defected cavity geom-
etries, whereas topological edge states ensured robustness. Impor-
tantly, the slow-light behaviour in this system was not an intrinsic 
property of the topology itself but is externally engineered through 
deliberate cavity length variation.

A non-Hermitian system adds an extra degree of freedom to control 
wave behaviour by using spatially graded loss profiles or gain–loss dis-
tributions to induce the rainbow effect68. In this context, the eigenstate 
n k k n( , , )m x y i  in the momentum space of the mth band is characterized 
by the Bloch wavevector (kx, ky) and the imaginary part of the refractive 
index n x( )i , which defines the position-dependent loss (Fig. 1d, bottom 
panel). This spatial loss gradient modifies the local propagation constant 
and progressively reduces the group velocity of the interface mode, 
eventually reaching zero at specific spatial locations, thereby enabling 
light trapping. Although this loss-gradient mechanism can indepen-
dently induce RT, a deeper understanding reveals its connection to 
exceptional points (EPs) and unique degeneracies in non-Hermitian 
systems84,85. An EP occurs when γ κ= , in which γ represents the gain or 
loss coefficient and κ is the coupling coefficient between the interacting 
modes of the system, such as coupled resonators or waveguide modes, 
whose interactions are influenced by spatial variations in loss or gain.

At or near an EP, the dispersion relation can be significantly modi-
fied, and under specific conditions, this may lead to a substantial reduc-
tion of group velocity, which supports light localization. By spatially 
grading the loss function, the EP condition shifts across different spatial 
locations for different frequencies, enabling the rainbow trapping 
effect. A recent experimental observation of TRT in non-Hermitian 
PCs68 demonstrated the versatility of this approach. As shown in Fig. 2e, 
graded loss engineering combined with tailored dispersion played a 
crucial role in achieving robust frequency-selective light confinement. 
This study realized TRT in a non-Hermitian square-lattice PC of dielec-
tric cylinders (n in= 2.4 + i) by introducing a gradient in the imaginary 
refractive index across 7.725 − 8.355 GHz, with near-field microwave 

measurements confirming robust spatial separation of modes along 
the graded interface.

Higher-order topological corner modes
HOTCMs offer a robust and discretized mechanism for frequency-
selective localization in TRT (Fig. 1e). In higher-order topological insu-
lators such as breathing kagome lattices and locally resonant 
metamaterial plates, the band structure is governed by a tight-binding 
model with alternating intra-cell (t1) and inter-cell (t2) coupling 
strengths86. When t t>2 1, the corner states naturally emerge within the 
bandgap, acting as localized energy traps. For TRT, introducing spatial 
gradients in parameters such as coupling strength or unit-cell geom-
etry allows these corner state eigenfrequencies to vary along the struc-
ture, resulting in a discrete topological rainbow59,87,88. As the group 
velocity of these modes approaches zero (v → 0g ), different frequency 
components become confined at distinct spatial positions. The robust-
ness of this localization is protected by higher-order topological 
invariants89,90, such as crystalline symmetry eigenvalues or the quan-
tized corner charge: Q A k k= ( )dc

1
2π BZ

∫ . These invariants guarantee 
stability against structural disorder and imperfections91,92, making 
HOTCM-based TRT highly reliable for practical applications.

A notable implementation of this concept was introduced in ref. 87, 
using two distinct configurations of breathing kagome PCs (K1 and K2) 
with different topological phases (Fig. 3a). Additionally, four perturbed 
kagome PCs (BK1–BK4) with C3 symmetry were fabricated to enhance 
corner state formation. A polygonal layout enabled selective localiza-
tion of corner states at vertices C1–C4. The corresponding field patterns 
(Fig. 3b) clearly exhibited the frequency-dependent localization associ-
ated with TRT. This work combined theoretical and experimental analy-
sis to demonstrate discretized TRT via HOTCMs confined between 
5.52 GHz and 6.26 GHz, exhibiting strong corner-localized confinement 
and spectral separation. Integrating tailored corner states with cavity 
engineering further refined the approach88. By geometrically modulat-
ing the sector angles of circular dielectric elements specifically at the 
corners of the PC heterostructure and introducing a central cavity with 
a defect, this simulation-based design enabled discrete topological 
mode localization across c a0.339 − 0.398 /  (Fig. 3c). The resulting 
discretized rainbow exhibited robust cavity and corner mode separa-
tion with high spatial confinement. This approach offers strong struc-
tural tunability and compact implementation, enabling flexible 
multi-frequency TRT without external control.

More recently, HOTCM-based TRT was enhanced by leveraging 
spatial modulation techniques to dynamically tune gapless corner modes 
in PC slabs59. As shown in Fig. 3d, a structured design incorporating 
gradient and barrier regions enabled precise frequency-dependent 
confinement at distinct corners. This work experimentally demonstrated 
HOTCM-based TRT by introducing synthetic translational gradients in 
PC slabs composed of ceramic square rods on a metallic substrate, and 
near-field microwave measurements confirmed the localization of cor-
ner modes spanning 6.49 − 7.34 GHz. These results highlight the flexibil-
ity of HOTCM-based architectures for discrete frequency localization, 
offering high spectral resolution, and the ability to resolve frequency 
differences as small as 0.06 GHz, making them highly suitable for 
compact, frequency-multiplexed photonic devices.

Synthetic dimensions
Synthetic dimensions provide an effective way to simulate higher-
dimensional physics within lower-dimensional systems. This approach 
introduces additional degrees of freedom such as angular momentum, 
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frequency, phase or unit-cell displacement that expand the effective 
parameter space and enable precise control over wave dynamics and 
topological transitions93–95. In PCs, the dispersion relation ω k( ) typically 
resides in a 2D parameter space defined by the Bloch wavevector k k( , )x y . 
Adding a synthetic translational parameter ξ, such as a continuous shift 
in unit-cell position, expands this to a 3D parameter space k k ξ( , , )x y , that 

is, two real and one synthetic dimension (Fig. 1f). Within this extended 
parameter space, nontrivial topological effects arise, characterized by 
the Zak phase (θ )n

Zak  and Chern number C k( )n y , defined as58:
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Fig. 3 | Photonic topological rainbow trapping based on higher-order 
topological corner modes. a, Band structures of unperturbed (K1, K2) and 
perturbed kagome photonic crystal (PC) (BK1–BK4) lattice configurations with 
different topological phases to induce corner localization. A polygon structure 
incorporating different corner types (C1–C4) supports distinct, localized 
corner modes. Adapted with permission from ref. 87, Optica Publishing Group. 
b, Calculated eigenfield (top panel) and measured field (lower panel) patterns 
showing higher-order topological corner modes confined to corners C1–C4 of the 
structure in part a at different frequencies. Adapted with permission from ref. 87, 

Optica Publishing Group. c, PC heterostructure integrating varying sector angles 
to tune corner and cavity geometries. Trivial (Tr) and topological (TO) regions 
denote the domains forming the interface for topological confinement. Multiple 
confined topological corner states (TCSs) form a discretized topological 
rainbow. Reprinted with permission from ref. 88, Wiley. d, Synthetic gradient 
introduced in PC slabs enables gapless higher-order topological corner modes to 
emerge across the structure. Calculated out-of-plane electric field distributions 
confirm frequency-separated corner localizations at specific frequencies. 
Adapted with permission from ref. 59, Optica Publishing Group.
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Gradually varying the displacement parameter ξ  across the struc-
ture modulates the Zak phase continuously, leading to topologically 
nontrivial bands and robust interface states at different frequencies. 
These states exhibit near-zero group velocity (v → 0g ), enabling TRT 
without requiring any physical gradient in refractive index or 
geometry.

An early theoretical demonstration of TRT using synthetic dimen-
sions was reported in ref. 58, in which a synthetic spatial parameter ξ, 
implemented via tapered unit-cell geometry, was used to create TRT in 
a 2D PC (Fig. 4a). Spatial modulation of ξ induced band topology char-
acterized by a Chern number, enabling robust interface states spanning 
0.343 − 0.3775c/a with minimal mode overlap and sharply localized 
field confinement. Unlike gradient-based systems, this approach 

inherently produced slow-light behaviour through topo logical design, 
eliminating the need for external gradient engineering. Tuning the 
synthetic parameter localized distinct frequency components at dif-
ferent spatial positions, forming a topological rainbow. This method is 
highly versatile, as it is independent of specific symmetries, lattice 
structures, material properties and wavelength ranges.

Notably, TRT based on synthetic dimensions has been extended 
to lossy systems96, preserving robustness even in non-ideal environ-
ments, as shown in Fig. 4b. This numerical study used a non-Hermitian 
twisted PC to realize TRT through tunable interface states spanning 

c a0.475 − 0.5183 / . Frequency selectivity was achieved by modulating 
material loss, enabling robust confinement even in the presence of 
energy dissipation. The first experimental demonstration of nanoscale 
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Fig. 4 | Photonic topological rainbow trapping based on synthetic dimension. 
a, Topological rainbow trapping is realized by introducing a synthetic dimension 
through unit-cell deformation. The synthetic parameter ξ n( ), representing the 
translational deformation of the nth unit cell, continuously tunes the topological 
state, resulting in slow-light and frequency-dependent localization at distinct 
spatial positions. Right panel shows the electric field intensity distribution at 
different normalized frequencies (c a/ ). Adapted with permission from ref. 58. 
Copyrighted by the American Physical Society. b, A theoretical model of a 
photonic crystal implementing a synthetic parameter through lattice tapering. 
The point labelled ‘o’ marks the origin of the y-axis and the centre of rotation. 
The location ‘ y ′’ indicates where the air hole intersects the y-axis. The parameter 
w is the twisted angle, and n = 0.5i  denotes the imaginary part of the refractive 
index to model non-Hermiticity. Transverse electric (TE)-polarized normalized 

electric field intensity |E|2 distributions show the formation of highly 
concentrated modes at different positions along the interface at distinct 
frequencies. Adapted with permission from ref. 96, Optica Publishing Group. 
c, Nanoscale demonstration of a topological rainbow trapping device on a 
silicon-on-insulator platform. The geometric structure consists of three regions. 
Region II (blue) is the region responsible for frequency-dependent spatial 
separation of topological states owing to the nontrivial topology in synthetic 
dimension. Regions I and III (red) are barrier regions, which prevent the leakage 
of light. The central panels show the scanning electron microscopic image 
highlighting the triangular hole pattern, and the atomic force microscope height 
profile confirming the fabricated structure after etching. Measured electric field 
intensity distributions (right) confirm spatial separation of topological states at 
different wavelengths. Reprinted from ref. 97, CC BY 4.0.
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on-chip TRT was realized in ref. 97 using a PC waveguide with engineered 
synthetic dispersion. As shown in Fig. 4c, wavelength components were 
selectively separated and localized within a compact silicon-on-
insulator structure, in which translational deformation served as a 
synthetic dimension. The localization was achieved across the telecom 
band (1, 540 − 1, 630 nm), with distinct trapping positions directly 
observed via scattering near-field optical microscopy. The device used 
complementary metal–oxide–semiconductor-compatible materials, 
exhibited strong mode confinement and showed robustness to fabrica-
tion imperfections, highlighting its practical integration for future 
multiplexed, on-chip topological photonic devices.

TRT beyond photonics
Although PCs have been a primary platform for TRT, the core princi-
ples extend to other wave systems, particularly to acoustic and elastic 
media. These platforms share the key features of topological protection 
and slow-light effects. In all three domains (photonic, acoustic and 
elastic), wave slowing is achieved by engineering the band structure to 
create flat bands near-zero group velocity. This can result from external 
gradients (such as refractive index, mass density and stiffness) that 
create frequency-dependent spatial landscapes or from topological 
modifications that reshape dispersion without requiring physical 
gradients. In both cases, robust edge or corner states, protected by 
topological invariants, ensure defect-tolerant and stable localization, 
which enables practical implementations of TRT across diverse wave 
platforms.

TRT in acoustic systems
Acoustic metamaterials provide a compelling platform for TRT because 
they are easy to fabricate and tune. In these systems, TRT harnesses spa-
tial variations in bulk modulus and density, analogous to permit-
tivity and permeability in photonic systems. The governing wave 
equation, ρ r p r p r∇ . ( ( ) ∇ ( )) + ( ) = 0ω

K r
−1

( )

2
, describes pressure fluctua-

tions p r( ) in a medium with periodic density ρ r( ) and bulk modulus 
K r( ), leading to phononic bandgaps similar to those found in PCs98–100. 
Introducing gradients in density or coupling strength alters the local 
band structure, enabling frequency-dependent localization of sound. 
Topological features, such as the valley Hall and quantum spin Hall 
effects, ensure that these localized acoustic modes remain robust 
against disorder101,102, making acoustic TRT a powerful and reliable 
wave-trapping technique103,104.

Early demonstrations of acoustic rainbow trapping used non-
topological structures, such as arrays of grooved rigid bars with linearly 
increasing groove depths that enabled frequency-selective energy 
localization105. These designs achieved broadband spectral separation 
but lacked robustness. To improve energy-harvesting performance, 
gradient phononic crystals with coupled interfaces were developed64. 
As shown in Fig. 5a, simulations and experiments showed strong agree-
ment, confirming the effectiveness of the system. This work used 
square-lattice phononic crystals composed of polymeric scatterers 
in air and integrated a piezoelectric film along the graded interface 
for efficient energy transduction. Broadband TRT was demonstrated 
over around 4.39–4.86 kHz, with output power enhanced by up to 
91%. The spatial separation of trapped modes was achieved by intro-
ducing an external gradient via gradual variation of scatterer size 
along the interface. Robustness against structural disorder was also 
verified. High-quality topologically protected interface modes, in 
which adjusting the water height optimized performance106 (Fig. 5b), 
achieved further refinement. This simulation-based study introduced 

a subwavelength acoustic metamaterial with water-filled resonant 
cavities in a honeycomb lattice. By tuning the water height, topological 
phase transitions were controlled, enabling robust spatial separation 
of sound across multiple frequencies in the 1.548–1.562 kHz range, with 
immunity to defects and sharp bends.

TRT was also extended to a 2D gradient, created using spatially 
varying scatterer shapes and geometric orientations to control the 
location of topological edge and corner states in topological phononic 
crystals. This enabled multidimensional wave trapping107 (Fig. 5c). The 
simulated field patterns confirmed discrete corner trapping across 
9.687–9.881 kHz.

Recently, acoustic higher-order topological insulators have been 
used to realize TRT based on corner states. As shown in Fig. 5d, introduc-
ing translational deformations into unit cells of a square-lattice sonic 
crystal achieved frequency-dependent localization108. This experimen-
tal work demonstrated deep-subwavelength corner modes that were 
directionally trapped in a multilane configuration over 2.85–3.08 kHz 
and confirmed them through near-field scanning. The design enabled 
tight confinement at scales around 21 times smaller than the wave-
length, which makes it highly suitable for applications in advanced 
acoustic devices, sound filtering and energy harvesting.

TRT in elastic systems
In elastic media, mechanical wave propagation is governed by the 
elasto dynamic equation. For isotropic materials, the displacement  
field u r t( , ) satisfies: ρ λ μ u μ u= ( + 2 )∇(∇ . ) − ∇ × (∇ × )u

t

∂

∂

2

2 , in which λ  
and μ are Lamé parameters, and ρ is the density. In periodic elastic 
structures, such as phononic plates and elastic metamaterials, this 
equation gives rise to well-defined band structures109–111. TRT in elastic 
systems is achieved by introducing spatial gradients in parameters 
such as mass density or stiffness. These variations reshape the local 
dispersion relation, slow down specific elastic modes and enable 
frequency-selective localization. Incorporating topological design 
principles ensures that the resulting trapped modes are robust against 
structural imperfections. For instance, graded phononic crystals with 
smoothly varying elastic properties have demonstrated controlled 
wave confinement. Resonant cavities embedded in such structures 
further allow fine-tuning of trapped frequencies with topological pro-
tection, applicable even for flexural and torsional modes66. These 
capabilities make TRT attractive for vibration isolation and mechanical 
energy harvesting.

Early demonstrations of elastic TRT focused on 1D and 2D systems3. 
For example, graded Su–Schrieffer–Heeger metawedges — structures 
with alternating segments of differing geometry — were used to local-
ize different components of broadband Rayleigh waves at distinct 
positions3 (Fig. 6a). This simulation-based study achieved spatial sepa-
ration of Rayleigh wave components over a broad frequency range of 
25.45–54.87 kHz. This concept was later extended to crystalline elastic 
plates with linearly increasing depth profiles69. Elastic TRT was experi-
mentally realized using dislocation-engineered phononic crystals with 
a graded boundary112 (Fig. 6b). This work introduced a homogeneous 
dislocation between two topologically distinct domains. The boundary 
region was gradually tuned via a translation vector applied to one side 
of the lattice, and the trapped modes were experimentally measured 
between 73.5 kHz and 78.5 kHz. The technique allowed for continuous 
modulation of interface group velocities via translation, enhancing the 
flexibility and configurability of the system.

A significant advance involved the use of HOTCMs in locally 
resonant elastic metamaterials to achieve multi-frequency trapping 
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at distinct geometric corners86, as illustrated in Fig. 6c. This experi-
ment demonstrated spatially separated corner modes spanning  
1.108–1.302 kHz, with each mode confined to a different corner con-
figuration. Notably, the corner localization was controlled through 
geometric design, enabling frequency-selective positioning of modes, 
an important step towards compact, reconfigurable elastic devices.

Finally, in a recent work, TRT was used to develop a piezoelec-
tric meta-device for energy harvesting, incorporating HOTCMs 

and edge modes to concentrate and convert vibrational energy113 
(Fig.  6d). This experimentally validated design used six topo-
logical corners, each supporting distinct resonant frequencies 
in the range 15.21–16.50 kHz. The vibrational energy at each cor-
ner was efficiently converted into electrical output via piezoelec-
tric patches, showcasing a robust and multifunctional platform 
for high-efficiency energy harvesting based on elastic TRT  
localization.
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Fig. 5 | Topological rainbow trapping in acoustic systems. a, Gradient 
phononic crystal designed for acoustic energy harvesting. The structure is 
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r a= 0.101  to r a= 0.282 , creating an interface gradient that enables frequency-
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The structure is surrounded by perfectly matched layers (PMLs) to avoid wave 
reflection and ensure accurate simulation results. The two phases are engineered 
by varying hΔ  from ±0.1 cm to ±0.18 cm in opposite directions, creating a 
spatial gradient across the interface to tune the local resonance frequencies. 

Bottom panels display the corresponding simulated pressure field distributions 
at different excitation frequencies, in which topological rainbow trapping (TRT) 
effect is shown. Reprinted with permission from ref. 106, Elsevier. c, Simulated 
acoustic pressure field distributions in a second-order topological sonic crystal 
formed by integrating four square lattices with side lengths d2 = 6, 5, 4 and 3 mm. 
Gradual transitions in topology enable TRT at multiple excitation frequencies, 
revealing spatially separated corner states. Adapted with permission from 
ref. 107, Wiley. d, Experimental realization of corner-localized TRT in acoustic 
higher-order topological insulators. Gradual variations in corner geometry 
across four regions (I–IV) lead to frequency-dependent localization at distinct 
corner sites (C1–C7) observed via pressure field intensity mapping. Reprinted 
with permission from ref. 108, Elsevier.
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Loss mitigation and tuning via complex  
frequency excitations
Despite the potential of TRT for extreme wave manipulation, two critical 
challenges for the broad applicability of TRT models are to minimize 
losses and to attain tunability. Recent advances have enabled rigorous 
examination of both aspects, particularly in the context of ultrafast 
applications driven by complex frequency excitations.

Complex frequency excitation refers to an excitation pulse char-
acterized by a complex frequency ω ω iω= +r i, in which ωr is the central 
(real) frequency of the pulse, and the imaginary frequency ωi is 
proportional to the pulse bandwidth114,115. Complex frequency excita-
tions interact transiently with materials and can produce a virtual gain 
effect, causing the system to behave as if it were lossless during the 
interaction. For example, consider a plasmonic system described by 
the Drude permittivity ε ω ω ω iωγ( ) = 1 − /( + )p

2 2 . A complex frequency 

excitation pulse with frequency ω iγ− /2 modifies the permittivity to 
ε ω iγ ω ω γ( − /2) = 1 − /( + /4)p

2 2 2 , in which ωp is the plasma frequency 
and γ is the damping rate in the Drude model. That is, the permittivity 
‘seen’ by the pulse is now completely real and loss-free116,117. This effect 
occurs only transiently during the duration of the pulse, and the source 
supplies the extra energy required to suppress losses. Nevertheless, 
this does imply that a pulse, such as a Gaussian or exponentially decay-
ing in time, can interact with a plasmonic medium in a completely 
loss-free manner, as if the plasmonic medium were lossless (virtual 
gain). In doing so, it effectively restores the zero-group-velocity point 
that would otherwise be obscured by material losses, which makes this 
technique especially suitable for ultrafast applications in which 
interactions are limited to the brief duration of each pulse118.

Complex frequency-based techniques also enable tunability. The 
imaginary component ωi (or γ) allows dynamic tuning of material 
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Fig. 6 | Topological rainbow trapping in elastic systems. a, Schematic of a 
graded Su–Schrieffer–Heeger (SSH) elastic metawedge. The topological rainbow 
trapping (TRT) effect is achieved by linearly increasing the rod heights from 
20 mm to 50 mm (with a being the unit-cell size). Elastic energy localization 
occurs at distinct spatial locations along the wedge for different excitation 
frequencies. Adapted with permission from ref. 3, APS. b, Experimental setup  
of an elastic phononic crystal with gradually tuned ξx from 0.1a to 0.16a, in 
which ξx refers to the x-component of the 2D translation vector ξ . An ultrasound 
piezoceramic transducer, acting as an elastic wave source, is placed at one port 
of the boundary. The blue dashed box indicates the experimental scan area. 
Out-of-plane displacement fields measured by a scanning laser vibrometer 
confirm the realization of TRT. Adapted with permission from ref. 112, APS.  

c, Polygonal elastic lattice supporting multiple higher-order topological  
corner modes (HOTCMs) at different corners C1–C7, formed by trivial and nontrivial 
domains created by locally resonant metamaterial plates. Experimental measure-
ments of out-of-plane displacement fields show frequency-specific confinements 
of the excited HOTCMs with localized modes sequentially appearing at corners in 
an anticlockwise order as the excitation frequency increases (C1 → C3 → C4 → C6). 
Adapted with permission from ref. 86, APS. d, Schematics and experimental setup 
of a fabricated meta-device for elastic wave energy harvesting using HOTCM. 
Piezoelectric patches (P1–P6) are attached at corner sites C1–C6 to convert localized 
vibrational energy into electrical signals. Laser-scanned out-of-plane displacement 
fields at different frequencies confirm the frequency-dependent localization of 
elastic waves TRT. Adapted with permission from ref. 113, Elsevier.
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responses without changing the underlying material parameters119. 
For example, by selectively enhancing a multipole term (such as electric 
dipole and quadrupole), complex frequency excitations can dynami-
cally alter the scattering behaviour. This tunability is achieved by vary-
ing γ, which adjusts the strength and interaction of different multipole 
terms, enabling selective spectral manipulation simply by changing 
the shape of the incident complex-frequency pulse, rather than altering 
the material itself.

Combined with topological edge states, complex frequency excita-
tions enable robust frequency-selective localization (Box 1). The imagi-
nary component γ can be engineered to spatially separate different 
frequency components along the topological interface, effectively 
realizing a rainbow trapping. This approach achieves robust rainbow 
trapping purely through temporal wave properties, without altering 
the physical structure. This dual mechanism — transient loss mitigation 
and engineered decay — provides precise, tunable and robust control 
of light trapping in topologically protected systems.

Conclusions and outlook
TRT is an emerging field at the intersection of wave physics, slow 
light and topology, offering significant opportunities for wave 

manipulation technologies. By harnessing topological invariants, TRT 
enables robust, defect-immune confinement and selective frequency 
localization across a broad spectrum. This Review has outlined the 
fundamental principles and mechanisms underlying TRT, emphasiz-
ing its key distinction from conventional rainbow trapping, namely, 
its resilience to structural imperfections and scattering. Berry cur-
vature has a pivotal role by introducing an anomalous velocity term, 
allowing for strong localization even in systems without inherently 
flat bands.

TRT can be realized through two primary design pathways: apply-
ing external gradients to modulate pre-existing topological states 
and intrinsically engineering topological properties that directly 
induce near-zero group velocity. These designs are further supported 
by key implementation frameworks such as graded index profiles, 
synthetic dimensions and HOTCMs, each facilitating robust and 
frequency-selective trapping. TRT has been successfully realized in PCs 
and extended to acoustic and elastic systems, demonstrating its broad 
applicability. In addition to structural approaches, complex-frequency 
excitations offer a dynamic way to mitigate losses and enhance tun-
ability, reinforcing the potential of TRT for robust, broadband wave 
localization in practical systems.

Box 1 | Complex frequency excitations for topological rainbow trapping
 

Mechanism of virtual gain and localization
Virtual gain temporarily eliminates intrinsic material losses through 
transient interactions with a propagating wave. Complex frequency 
excitations provide virtual gain that modifies the response of the 
system, rendering the medium effectively loss-free during the 
interaction window with the pulse. This allows energy to concentrate 
at specific points in space without dissipating prematurely, enabling 
transient localization. Complex frequency excitations introduce a 
temporal decay factor to the incoming wave. This can be expressed 
as E t α e( ) cos(2πft) . Γt− , in which the decay factor = =ω γΓ 2πi , with ωi 
representing the imaginary frequency and γ is the decay rate. For a 
given frequency f, a larger γ leads to faster decay effectively trapping 
the wave energy near its origin.

Spatial and temporal decay
Spatial localization is influenced by the wavevector k, which 
determines the propagation speed and wavelength of the wave in the 
medium. For a given spatial position x, the amplitude of the localized 
wave is determined by E x αe( ) ηx− , in which spatial decay constant 

= =η v γ vΓ/ 2π /g g. A higher Γ or lower vg (vg→0) enhances localization. 
The spatial localization distance xLoc can be expressed as x v /ΓLoc g= . 
The observed decay is not a result of random loss, but a mechanism for 
spatially selective energy confinement, leading to concentration rather 
than dissipation. Unlike traditional losses, in which energy dissipates 
into the material, this mechanism modifies the amplitude via −e ηx, 
creating zones of confinement. By tuning γ, frequency-specific 
localization points can be engineered along the interface. This 
controlled confinement enables rainbow trapping without a material 
gradient (see the figure, right panel). By contrast, in gradient-based 
topological structures, the wave remains localized near the trapped 
point because the gradient controls energy flow, preventing rapid 
decay and enabling robust, frequency-selective confinement (see the 
figure, left panel).

Multiple frequencies (rainbow effect)
Each frequency component decays at its own rate γi, resulting in distinct 
spatial localization points. The amplitude of each component follows 
E x αe( )i

η xi− , in which η v γ vΓ/ 2π /i i i i ig, g,= = . For N frequency components, 

the total localized wave field = ∑
=

− −E x t f t e e( , ) cos(2π ) . .
i

N

i
η x

1

Γ ti i . Each 

wave component contributes to the total field with its own temporal 
decay and spatial localization. Temporal decay ensures that wave 
energy diminishes over time, but different frequencies decay at different 
rates, creating temporal separation. Spatial decay, governed by ηi, leads 
to rainbow trapping. The interplay between group velocity and decay 
factor determines where and how each frequency localizes along the 
topological interface, enabling robust, spectrally distinct and spatially 
separated trapping regions. CFE, complex frequency excitations; 
TES, topological edge state.
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Potential applications
TRT offers a powerful approach to optical filtering by enabling 
frequency-selective light manipulation. By placing detectors or out-
put couplers at designated locations along a topological interface, 
specific wavelengths can be spatially extracted with high precision120. 
This makes TRT an ideal platform for applications such as on-chip wave-
length division multiplexing60,121,122 and optical buffering with enhanced 
efficiency and robustness123. Unlike conventional photonic circuits that 
rely on bulky components that are prone to dispersion-induced signal 
distortion, TRT achieves frequency separation through spatial localiza-
tion. This inherent separation reduces crosstalk and interference, even 
in the presence of fabrication imperfections or scattering124. More-
over, by overcoming mode degeneracy, which is common in standard 
topological waveguides, TRT facilitates efficient wavelength division 
multiplexing within a single waveguide, streamlining circuit design and 
reducing device footprint125. Additionally, the ability of TRT to control 
group velocity enables the realization of optical delay lines126,127, disper-
sion compensation to align slower and faster channels75,128 and multi-
channel optical buffering56 for improved synchronization in photonic 
networks. Beyond buffering, TRT can be used to develop high-capacity 
optical memory devices129 by encoding information across multiple 
wavelength channels and leveraging slow-light effects for enhanced 
storage density. These capabilities position TRT as a promising techno-
logy for integrated photonic circuits, which enhances signal processing 
performance while maintaining compactness and scalability.

In TRT, the combination of slow-light effects and spatial frequency 
separation significantly enhances light–matter interactions by increas-
ing the interaction time between photons and the material system130,131. 
This enables more efficient nonlinear optical processes, including fre-
quency conversion, second-harmonic generation and four-wave mix-
ing132,133, as different nonlinear effects can be controlled independently at 
separate wavelengths. Beyond classical nonlinear optics, TRT facilitates 
strong photon–photon interactions, making it a promising platform 
for nonlinear quantum optical devices. By trapping photons at specific 
spatial locations, TRT enables the wavelength-selective quantum gates, 
which can manipulate quantum states with high fidelity. For instance, 
a TRT-based waveguide could support nonlinear interactions at a tar-
geted frequency, while leaving the rest of the spectrum unaffected. This 
contrasts with conventional topological systems, in which all frequen-
cies may undergo similar nonlinear effects, which limit efficiency. The 
unique ability of TRT to spatially control non linear interactions makes 
it an effective tool for integrated quantum photonics.

TRT-based structures offer exceptional stability, making them 
ideal for precision applications such as acoustic rainbow sensors 
and hearing restoration technologies, in which traditional systems 
often suffer from signal degradation and crosstalk in the presence of 
defects. The localized slow-light effect in TRT systems amplifies subtle 
environmental changes, enabling high-resolution, multi-parameter 
sensing with enhanced sensitivity134,135. Hearing restoration technolo-
gies, such as cochlear implants, also benefit from advances in sound 
processing136,137. Incorporating principles akin to acoustic TRT sensors 
enables the decomposition of complex sound signals into individual 
frequency components, allowing for more precise auditory nerve 
stimulation138. This may improve sound perception and contribute to 
a more natural listening experience.

In mechanical systems, the ability of TRT to localize elastic waves 
at predefined positions improves the accuracy of non-destructive test-
ing by isolating specific vibrational modes, reducing wave dispersion 
and enhancing damage detection. Additionally, this localized wave 

confinement enhances mechanical energy harvesting by efficiently 
concentrating vibrations at targeted locations, eliminating the need 
for external resonators or frequency-tuning components139,140. The 
combined capabilities of TRT in precise sensing and robust energy 
harvesting make it highly suitable for applications requiring stability, 
sensitivity and compact design.

Future research directions
Recent advances in TRT have demonstrated remarkable potential for 
wave manipulation, but key challenges persist, necessitating a deeper 
investigation into both theoretical and practical aspects. Hermitian 
systems offer robust topological protection but often lack the flexibility 
required for dynamic control. By contrast, non-Hermitian mechanisms 
introduce new degrees of freedom for manipulating group velocity 
but can also lead to instabilities arising from gain–loss imbalance or 
sensitivity near EPs. A key open question is whether Hermitian designs 
can retain topological robustness while selectively incorporating 
non-Hermitian features, such as controlled loss gradients and EPs, to 
enhance tuning capabilities. Developing a systematic framework that 
balances these strengths is critical for achieving broadband TRT with 
improved resilience and minimal energy loss.

Another promising direction involves expanding TRT concepts 
into higher-dimensional synthetic spaces. Existing TRT designs typi-
cally extend 2D spatial systems by incorporating one synthetic dimen-
sion, forming (2 + 1)D parameter spaces (two spatial dimensions and 
one synthetic dimension). Exploring configurations involving addi-
tional synthetic dimensions, such as (2+2)D or even higher-dimensional 
synthetic parameter spaces, could unlock richer topological states 
with enhanced spatial and spectral control. Understanding whether 
such higher-dimensional synthetic spaces can enable multichannel or 
multidimensional TRT with improved robustness and functionality is 
another intriguing research direction.

Integrating TRT principles into plasmonic systems also presents 
exciting possibilities, as plasmonics inherently support strong field 
confinement and subwavelength-scale operation. This makes plas-
monic platforms ideal candidates to achieve robust, frequency-selective 
localization in nanoscale environments. Exploring how TRT concepts 
can extend to topological plasmonics may lead to enhanced sens-
ing technologies and quantum plasmonic devices. Although con-
ventional rainbow trapping has been demonstrated in plasmonic 
systems, realizing TRT remains challenging owing to intrinsic ohmic 
losses and because it is difficult to achieve stable topological edge 
states in a complex, frequency-dependent dispersion. Recent efforts 
have demon strated the possibility to sustain topological edge states 
in lossy plasmonic systems, through the use of compact planar arrays 
of plasmonic nanoparticles141, hybrid low-loss platforms142 and periodi-
cally perforated plasmonic waveguides143. Continued advances in dis-
persion control, loss mitigation and interface engineering are steadily 
bringing TRT in plasmonics closer to practical realization.

Furthermore, integrating TRT with quantum emitter systems 
offers exciting opportunities for scalable quantum networks and 
advanced signal control. Zero-group-velocity states of TRT naturally 
enhance slow-light effects, extending the interaction time between 
photons and quantum emitters such as quantum dots, diamond defects 
or atomic systems. This prolonged interaction could enhance coher-
ence, mitigate decoherence effects and improve quantum memory and 
communication systems144–146. Additionally, strong spatial and spectral 
confinement capabilities of TRT make it well suited for manipulating 
the quantum states of light. Leveraging these properties may enable 
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improved control over single-photon sources, facilitating precise 
emission timing and enhanced photon indistinguishability.

Integrating artificial intelligence and machine learning could 
also improve TRT design by optimizing material compositions and 
geometries for superior performance. However, further investigation 
is required to understand how effectively inverse design can be applied 
to TRT systems to achieve enhanced control, efficiency and robustness.

Recent advances, such as the Landau rainbow, have demonstrated 
that combining pseudomagnetic and pseudoelectric fields can achieve 
broadband rainbow trapping by breaking the degeneracy of Landau 
levels147. Meanwhile, the newly proposed continuum Landau mode 
mechanism leverages non-Hermitian physics through a spatially vary-
ing imaginary vector potential to generate a continuous spectrum 
of localized modes, enabling distortion-free rainbow trapping148. 
Incorporating non-Hermitian elements into these gauge-field designs 
offers exciting opportunities to improve wave localization precision. 
Selective damping or amplification of specific Landau modes may 
enhance frequency separation and control.

Building on earlier demonstrations of on-chip TRT using passive 
silicon-on-insulator PC waveguides that implement synthetic dimen-
sions for spectral separation97, recent works61,149 have extended TRT into 
the active regime. A notable example is the realization of ultra-compact 
topological rainbow nanolasers operating in the telecom band, in which 
a tapered PC nanocavity design supports topologically protected 
edge modes with diffraction-limited mode volumes and ultra-low 
thresholds under optical pumping61. Although current devices rely on 
optical pumping, achieving electrical pumping is crucial for fully inte-
grated, energy-efficient multiplexed light sources suitable for scalable 
on-chip applications. In addition to powering emission, applied electric 
fields may enable fine spectral tuning of each trapped mode, allowing 
dynamic modulation and spectral reconfigurability across TRT-enabled 
devices. Looking ahead, advancing TRT from individual devices to 
photonic integrated circuits could enable on-chip multiplexed com-
munication, reconfigurable spectral processing and scalable topo-
logical photonic networks, in which frequency-separated, robust light 
channels are dynamically controlled across complex architectures.

Published online: xx xx xxxx
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