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Discovery of the exact 3D one-way wave
equation

Kosmas L. Tsakmakidis 1 & Tomasz P. Stefański2

The standard wave equation describing symmetrical wave propagation in all
directions in three dimensions, was discovered by the French scientist
d’Alembert, more than 250 years ago. In the 20th century it became important
to search for ‘one-way’ versions of this equation in three dimensions – i.e., an
equation describing wave propagation in one direction for all angles, and
forbiting it in the opposite direction – for a variety of applications in compu-
tational and topological physics. Here, by borrowing techniques from relati-
vistic quantum field theory – in particular, from the Dirac equation –, and
starting from Engquist and Majda’s seminal, approximative one-way wave
equations, we report the discovery of the exact one-way wave equation in
three dimensions. Surprisingly, we find that this equation necessarily – simi-
larly to the innate emergence of spin in the Dirac equation – has a topological
nature, giving rise to strong, spin-orbit coupling and locking, and non-
vanishing (integer) Chern numbers.

The well-known wave equation was first reported by d’Alembert in
17471, following critical insights by Bernoulli2, Taylor3, and Euler4. Since
then, and particularly in the 20th century, with the emergence of
computational techniques (requiring one-way absorbing boundary
conditions) and topological physics5, it became intriguing to identify,
so called, ‘one-way’ wave equations in three dimensions – describing
three-dimensional wave propagation in one direction, but completely
forbiting it in the opposite direction. The breadth of those efforts can
be measured by the literally thousands of papers that have been
inspired by the first successful – yet approximative– effort by Engquist
and Majda on arriving at such an ‘one-way’ wave equation, in 19776.
Even more recently, the search has again resurfaced following the rise
of topological condensed matter5, which involves robustly unidirec-
tional waves – but whose one-way nature is usually ascertained from a
dispersion band-diagram and/or underlying space- or time-symme-
tries, without explicit reference to an underlying one-way wave equa-
tion itself. In fact, until now the ‘best’ (least approximative) one-way 3D
wave equation that we know of is still the one derived by Engquist and
Majda more than 45 years ago, with various perturbative
improvements7–9. Whereas until now we knew that topological waves
are usually unidirectional, we are now led to the fundamental general

insight that the opposite too is true, namely that anywave propagating
rigorously in a one-way manner for all angles, must inherently be
topological in nature. Our work, establishing a foundational frame-
work for the study of one-waywaves in three dimensions, carries deep-
ploughing consequences for the physics of topological and unidirec-
tional wave transport, opening the road for a shift of emphasis from
topology and symmetry directly to the nature of the underlying one-
way transport, and can lead to new, simplified, designs of unidirec-
tional and topological devices in physics and engineering6.

We shall here report the discovery of just such an equation,
starting our analysis from the approximative one-way wave1–4

equations derived by Engquist and Majda in their pioneering
work5,7–9, and then, aided by the Dirac equation6,10, arriving at exact
one-way solutions of the wave equation in three dimensions. We
shall then uncover in some detail the surprising topological nature
that these new, exact solutions have. Whereas until now we knew
that topological waves are usually unidirectional, we are now led to
the fundamental general insight that the opposite too is true,
namely that any wave propagating rigorously in a one-way manner
for all angles, must inherently be topological in nature. Our work,
establishing a foundational framework for the study of one-way
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waves in three dimensions, carries deep-ploughing consequences
for the physics of topological and unidirectional wave transport,
opening the road for a shift of emphasis from topology and sym-
metry directly to the nature of the underlying one-way transport,
and can lead to new, simplified, designs of unidirectional and
topological devices in physics and engineering6.

Results
The standard and approximative one-way wave equations
In three dimensions, the standard wave equation is given by:

∂2U
∂x2

+
∂2U
∂y2

+
∂2U
∂z2

� 1
c2

∂2U
∂t2

=0 ð1Þ

and we may define the operator L = ∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 � 1
c2

∂2

∂t2
=

L2x + L
2
y + L

2
z � 1

c2 L
2
t , suggesting that Eq. (1) takes the form: LU =0. Eng-

quist and Majda proceeded5 by breaking the operator L into two
operators L + and L�, such that LU = L+ L�U =0, with L+ and L� being
defined, in three dimensions, as:

L + = Lx +
Lt
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Π2

p
ð2Þ

and

L� = Lx �
Lt
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Π2

p
ð3Þ

with Π =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcLy=LtÞ2 + ðcLz=LtÞ2

q
: Crucially, in ref. 5, it is shown that the

operation L�U =0 results exactly in awave propagating in thenegative-
x direction (towards x =0) only, for all angles of incidence – and simi-
larly for L+U =0, in the positive-x direction (see Fig. 1). The approx-
imation, here, arises from the way in which the square root in Eqs. (2),
(3) is estimated: In5, U is assumed to be a scalar field, thus, if e.g. a

second-order approximation is invoked, where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Π2

p
�

1� Π2=2+0½Π4�, we have: L� � Lx � Lt=c
� �

1� Π2=2
� �

= Lx �
Lt=c
� �

+ cL2y= 2Lt
� �

+ cL2z= 2Lt
� �

. From this last approxi-mative expres-

sion for L�, we arrive, using L�U = 0, at the following (rather
unfamiliar) approximative one-way wave equation:

∂2U
∂x∂t

� 1
c2

∂2U
∂t2

+
c
2
∂2U
∂y2

+
c
2
∂2U
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describing a wave propagating solely in the negative-x direction – but
for a narrow range of incident angles, owing toΠ having been assumed
‘small’ (‘small’ valuesofLy and Lzper Lt). Similar approximative one-way
wave equations can be derived for all other remaining five directions
( +x, ±y, and ±z). Hence, the innate approximation in Engquist and
Majda’s approach is the one concerning the square root of 1–Π2 in Eqs.
(2) and (3): Higher-order terms allow for progressively larger Ly/Lt and
Lz/Lt terms, i.e. the approximateone-wayequation is valid for a broader
range of angles,whereas the zero-order approximation is valid only for
Ly = Lz =0, that is, for a one-dimensional transport only, leading to the
familiar 1D one-way wave equation ∂U=∂x ± ð1=cÞ∂U=∂t =0:

The exact one-way wave equation in three dimensions
To arrive at exact expressions for Eqs. (2) and (3), it should prove
useful, from a pedagogical perspective, to be reminded of Dirac’s
insight for ‘taking the square root’ in amathematically similar scenario
in the relativistic theory of the electron5,10. Using the equation
E2 = c2p2 +m2c4 for relativistic massive particles, and making the
assignments E = ħω↔ iħð∂=∂tÞ and ~p=ħk ↔ – iħ~∇ for an assumed
ei(kr–ωt) dependence, we obtain the Klein-Gordon equation:
–ħ2ð∂2ψ=∂t2Þ= ð�ħ2c2∇2 +m2c4Þψ. At this point, Dirac’s idea was to
consider ψ as not necessarily a scalar field, but a spinor field, and from
Fig. 2 we immediately surmise that (taking c = 1) onemaywrite, with no
approximation(s) at all:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x +p2

x +m2
� �

I =
q

pxσx +pyσy +mσz ð5Þ

where σx =
0 1
1 0

� �
,σy =

0 � i
i 0

� �
, and σz =

1 0
0 � 1

� �
are the

Pauli spin matrices, and I the unit matrix. We, thus, arrive at the exact,
Dirac equation:

ih
∂ψ
∂t

= �ih σx
∂
∂x

+ σy
∂
∂y

� �
+ σzm

	 

ψ, withψ=

ψA

ψB

� �
ð6Þ

which is consistent with the requirements of Lorentz covariance and
respects particle conservation5,10.

In a similar vein, assuming an e–i(kr –ωt) dependence, and with c = 1,

we see from Eq. (3) that L� = Lx � i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ly

2 + Lz
2 � Lt

2
q

, and thus, with the

aid of Fig. 2, we may readily calculate – exactly, without any approx-
imation(s) or fractional derivatives – the square root:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ly
2 + Lz

2 � Lt
2

q
= σxLy + σyLz + iσzLt . As a corollary, from L�U = 0,with

Fig. 1 | The standard and the one-way wave equations. a The standard wave
equation describes a wave propagating symmetrically in all directions (thin red
arrows) in three dimensions. Here, the blue arrows indicate a possible direction of
the transversemagnetic field, for the case of an electromagneticwave. bA one-way

wavewould literary be ‘half’ of thewave shown in (a), propagating for all transverse
angles in only one direction, taken to be the ‘positive’ one, but not in the ‘negative’
direction.
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the use of the standard energy and momentum associations men-
tioned above, and the involutory properties of the Pauli matrices,
namely σ2

x = σ
2
y = σ

2
z = � iσxσyσz = I, we may calculate the Hamiltonian

for this case as:

H = σypy � σ
x
pz + σzpx ð7Þ

i.e., the sought-after, exact (for all angles of incidence on the x = 0
plane) one-way wave (Weyl-like) equation is:

iħ
∂ψ
∂t

= ðσypy � σ
x
pz + σzpxÞψ= ½ σ � pð Þjy + σ ×pð Þjy�ψ= ½R 2ð Þ

ij σ
ipi + ε2jkσ

jpk �ψ
ð8Þ

where ψ is now a spinor field – not a scalar one, as in ref. 5 –, σ is the
Pauli vector, the metric Rð2Þ

ij =diag 0, 1, 0ð Þ, and ε2jk is the Levi-Civita
symbol.

Further, for the assumed e-itH/ħ time-dependence, and using well-
known identities for matrix exponentials, the matrix governing the
evolution of the left-going (towards x = 0) wave described by Eq. (8),
turns out (in the wavevector basis) to be the following:

M =
cos ωtð Þ � i kx

k sinðωtÞ � ky

k + i kz
k

� �
sinðωtÞ

ky

k + i kz
k

� �
sinðωtÞ cos ωtð Þ+ i kx

k sinðωtÞ

2
64

3
75 ð9Þ

with eigenwaves (i.e., eigenvectors):
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� ky

k + i kz
k

i 1 + kx
k

� �
2
4

3
5 andψ2 =

� ky

k + i kz
k

i �1 + kx
k

� �
2
4

3
5 ð10Þ

of square magnitudes 2 1 + kx
k

� �
and 2 1� kx

k

� �
, respectively, and

eigenvalues λ1, 2 = cosðωtÞ± i sinðωtÞ. From these expressions, we may
calculate the canonical (orbital)momentum density11, po =Re ψyp̂ψ

� �
,

for each eigenwave, arriving at:

po
1 = 2ħk 1 +
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� �
ð11aÞ

and

po
2 = 2ħk 1� kx

k

� �
ð11bÞ

where k =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
x + k

2
y + k

2
z

q
, while the x-, y-, z-components of the spin

matrix s = ψyŜψ (where Ŝ is the standardmatrix spinoperator) for each

left-going eigenwave are:
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Equations (11) and (12) reveal that there is strong, transverse, spin-
orbit coupling for both left-propagating eigenwaves in the considered
isotropic inhomogeneous (i.e., not anisotropic homogeneous, as
usually) medium. Crucially, they also reveal, from a spin-orbit inter-
actions perspective11 too, a further reason for the attained one-way
property. For a left-going (px < 0)wave incident at an arbitrary angle on
the x =0 plane, where there is continuity of the momentum compo-
nents py and pz, together with the conservation of the spin, there are
two possibilities: Either the eigenwave is reflected to the same eigen-
wave, which is impossible because the change in the sign of px (from
px <0 to px >0) and the continuity of py and pz, would imply, from Eq.
(12), that the spin components sx and sy of the incident and reflected
waves would be equal, but their sz component would change sign –

which is not allowed, owing to the conservationof the spin. The second
possibility is that the first eigenwave is reflected to the second eigen-
wave of Eq. (8), which has a Weyl-like structure, connected at the
inception uniquely to the one-way operators, but this too is excluded
because with px < 0, py > 0 and pz >0 for the first (incident) eigenwave
and px > 0, py > 0, pz >0 for the second (reflected) eigenwave, we see
from Eq. (12) that this implies sx >0, sy < 0, sz >0 for the first
eigenwave and sx <0, sy >0, sz > 0 for the second eigenwave, which is
again not allowed, owing to the conservation of the spin angular
momentum. Thus, for all scenarios, and for all angles of incidence,
reflection from the x = 0 plane is rigorously suppressed – as expected
in the first place from the present exact solution for the ‘Engquist-
Majda’ operator L�.

Finally, we may formally identify the topological nature5 of the
afore-described strong spin-orbit interactions. In particular, in both
cases we may calculate the Berry connection A kð Þ= iψ·∇kψ, from
where we find that in both cases the Berry curvatureΩ(k) = ∇k×A(k) =
k
2k3 and its flow through the k-space sphere γ =

R
SΩ kð ÞdS = 2π,

leading to a non-zero, integer Chern number C = γ/(2π) = 1 –

completing the proof as to the topological nature of the 3D one-
way wave solution(s). Exactly analogous results can similarly be
obtained for all other eigenwaves, propagating in the +x, ±y, ±z
directions.

Discussion
As an example of the power of the above discovery, we shall now
systematically design and engineer a 3D one-way device using Eq. (7)
and (8), for which we can be certain – right from the beginning, owing
to the above properties of Eq. (7) – that it is a topological one. Indeed,
from the ‘generator’ Eq. (7), let us be steered by the properties of the
sigma matrices (above Eq. (7)), and, in a targeted way, modify, e.g., kz
to, say, b0 – b1cos(kz), where b0, b1 are simply two arbitrary constants.
We want our 3D one-way material to be made of multiple layers, and
for each layer we want to have, say, a 2D honeycomb lattice structure,
where each unit cell has two inequivalent sites (A and B sublattices).
The so-designed 3D crystal structure consists of repeating the above
2D layers periodically along the z-axis. The in-plane lattice vectors are
then:

a1 =ax̂, a2 =
a
2
x̂ +

ffiffiffi
3

p
a

2
ŷ, a3 = � a

2
x̂ +

ffiffiffi
3

p
a

2
ŷ, ð13Þ

Fig. 2 | Dirac’s insight for the relativistic equation describing an electron5. The
idea is to take the square root of the operator p2

x +p
2
x +m

2 (see also main text)
‘without’ taking the square root in the usual way. This calls for deploying matrices
rather than scalar quantities. As shown in the figure, the three Pauli matrices
immediately pop up, explaining naturally the existence of spin in an electron.
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The nearest-neighbor displacement vectors connecting sub-
lattices A and B are:

d1 = 0, �að Þ, d2 =

ffiffiffi
3

p
a

2
,
a
2

 !
, d3 = �

ffiffiffi
3

p
a

2
,
a
2

 !
ð14Þ

Starting from the real-space tight-binding model with hopping
amplitudes txy and tz themomentum-space HamiltonianH(k) takes the
form:

HðkÞ=
b0 � b1 cos kzaz

� �
txyð1 + eik�a1 + eik�a2 Þ

txyðe�ikxa + e�ikx a2 + i
ffiffi
3

p
a

2 ky + e�i
ffiffi
3

p
a

2 ky Þ �ðb0 � b1 cos kzaz

� �Þ
 !

ð15Þ

From this, we may analytically find the Berry curvature near a
band inversion point:

Ωxy kx , ky, kz

� �
=

b0 � b1 cos kz

� �
2ðk2

x + k
2
y + b0 � b1 cos kz

� �� �2Þ3=2 ð16Þ

Finally, the analytically derived Chern number is given by:

C kz

� �
=

1, if b0 � b1 cos kzaz

� � <0ðband inversionÞ
0, otherwise

(
ð17Þ

which is precisely what we were looking for.
In conclusion, we have identified the exact, 3D one-way wave

equation, starting from Engquist and Majda’s seminal work5, but
assuming spinor eigenfields5,10,11. The discovered equation(s),
under judicious excitations give rise to solely one-way wave
propagation, and, surprisingly, turn out to have a deeply topo-
logical nature, a feature that could not be discerned by the
approximative previous solutions5,7–9,12,13. Our exact one-way wave
equation(s) – not necessarily restricted to electromagnetic
waves14, but concerning all types of waves in many contexts –

may guide systematic new designs of one-way devices without
any direct reference to, e.g., an interplay between topology and
gapless modes, sign of the group velocity, or space-/time-symme-
tries, simply by being steered by the analytical one-way wave
equations and their properties, thereby conceivably allowing for a
fundamental shift of emphasis from topology directly to the in-
built nature of the one-way wave-propagation itself.

Data availability
The data that support the findings of this study are available from the
corresponding author upon request.

Code availability
The simulation codes used in this study are available from the corre-
sponding author upon request.
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