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Abstract: Complex-frequency excitations have recently attracted a lot of attention owing to
their ability to solve a number of extraordinary challenges in photonics, such as overcoming
losses without gain in metalenses and plasmonic waveguides and achieving virtual absorption.
However, the totality of the works so far has been mainly computational or experimental, and a full
theory of the complex dynamics enabled by these excitations is still missing. Here, we develop
a fully analytical, exact time-domain theory for the dynamical scattering of these excitations
by both sides of dielectric plates, which have been used to achieve virtual absorption. Our
precise theoretical analysis confirms previous observations and, in addition, reveals a number of
intriguing phenomena that were previously missed, such as discontinuities in the scattering of
the outgoing electromagnetic field and release of the stored energy in distinct packets.

© 2025 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Complex-frequency excitations [1–3] have recently been exploited for a range of unexpected and
exciting applications in photonics, from compensating losses in metamaterials and superlenses
[4,5] or polaritonic propagation [6], to enabling virtual absorption [3,7–15], virtual critical
coupling [16,17], virtual optical pulling forces [18], virtual parity-time symmetry [19,20], and
diverse other functionalities [21–35] beyond the usual bounds on light scattering [24]. These
excitations open a completely new perspective to the optical world, but the totality of studies thus
far have been based on either computational or experimental techniques, as a result of which
the complex dynamics enabled by these excitations are still considered peculiar and lack a full
time-domain closed-form theoretical analysis.

It is the objective of the present work to introduce precisely such a theory, implemented for the
general phenomenon of virtual absorption [3,7–15]. Starting from the properties of the scattering
matrix S of a dielectric plate, and by performing an intricate calculation of the infinite series of
the associated complex residues for complex-frequency incident fields, we manage to obtain an
exact, time-domain solution for the outgoing (scattered) field based directly on the properties of
the plate only, that is, on its electric permittivity, magnetic permeability and thickness. Our exact
analysis fully reproduces all relevant previous computational results, but in addition sheds light
on completely unexpected – and first-time introduced – phenomena that were missed by previous
studies, such as discontinuous (in time) waveform of the scattered electromagnetic field and
release of energy in discrete (with time) wavepackets, never before, to our knowledge, observed
in wave physics and uniquely tied to the present complex-frequency time-domain problem.

2. Scattering matrix of a dielectric plate

In this work, we focus on a lossless, homogeneous, and isotropic plate of thickness L, characterized
by constant relative electric permittivity ϵ2 and magnetic permeability µ2, which was the simple
structure used in the original work that first demonstrated the phenomenon of coherent virtual
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absorption [3,8]. The plate is embedded in an otherwise homogeneous, isotropic, and lossless
medium, with constant relative permittivity ϵ1 and permeability µ1. The corresponding refractive
indices and wave impedances are n2 =

√
ϵ2µ2, Z2 =

√︁
µ2/ϵ2 for the plate, and n1 =

√
ϵ1µ1,

Z1 =
√︁
µ1/ϵ1 for the surrounding medium. We further assume that the plate is perpendicular to

the x-axis, which is directed from left to right, as presented in Fig. 1. It is worth noting that, since
throughout this paper we consider the electric permittivity and magnetic permeability of both
the plate and the surrounding medium to be constant (i.e., frequency-independent), the findings
remain applicable across different frequency and time ranges, provided that the plate thickness is
scaled accordingly.

Fig. 1. Schematic representation of electromagnetic wave scattering by a plate of thickness
L and refractive index n2, embedded in an infinite medium with refractive index n1. In the
cases considered in this work, both media have a relative magnetic permeability of unity.

Electromagnetic plane waves with angular frequency ω, incident normally on the plate from
the left or right, are given by Ain exp{i[ωn1(x− xA)/c−ωt]} and Bin exp{i[−ωn1(x− xB)/c−ωt]},
respectively, where c is the speed of light in vacuum and xA (xB) is a point on the left (right) surface
of the plate. The corresponding outgoing waves have the forms Aout exp{i[−ωn1(x− xA)/c−ωt]}
and Bout exp{i[ωn1(x − xB)/c − ωt]}. Their amplitudes are related to those of the incident waves
through a 2 × 2 scattering matrix (the S-matrix) as follows

⎛⎜⎝
Aout

Bout

⎞⎟⎠ = ⎛⎜⎝
r t

t r
⎞⎟⎠ ⎛⎜⎝

Ain

Bin

⎞⎟⎠ , (1)

with (see, e.g., Ref. [36])

r =
(Z2

1 − Z2
2 )
[︁
e2iωn2L/c − 1

]︁
(Z1 + Z2)2 − (Z1 − Z2)2 e2iωn2L/c (2)

and

t =
4Z1Z2eiωn2L/c

(Z1 + Z2)2 − (Z1 − Z2)2 e2iωn2L/c . (3)

We note that, while the standard definition of the scattering S-matrix refers all incoming and
outgoing waves to a common origin [37], in our case, it is more convenient to expand the waves
on the left and right sides of the plate using different reference points on the corresponding plate
surfaces.
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Setting ξ ≡ (Z1 + Z2)/(Z1 − Z2), the eigenvalues of the S-matrix take the form

s1,2 = r ∓ t = ∓
ξeiωn2L/c ± 1
ξ ± eiωn2L/c (4)

with the associated eigenvectors being v1,2 = (1 ∓ 1)T. It can be readily deduced from Eq. (4)
that s1 has simple poles in the lower complex-frequency half-plane and corresponding zeros in
the upper half-plane, situated symmetrically with respect to the real axis, specifically at

z∓ν ≡ (ω + iγ)∓ν n2L/c = (2ν + 1)π ∓ i lnξ , ν ∈ Z , (5)

where the poles and the zeros are given by the “−” and “+” signs, respectively. Similarly, the
poles and zeros of s2 appear at

z∓ν ≡ (ω + iγ)∓ν n2L/c = 2νπ ∓ i lnξ , ν ∈ Z . (6)

The real parts of the frequencies given by Eqs. (5) and (6) correspond to the Fabry-Pérot
resonance frequencies of the plate. That is, the poles and zeros of s1 (s2) yield the standing
wave condition for plate thickness equal to odd (even) multiples of half-wavelength. It is also
straightforward to show from Eq. (4) that the analytic continuation of the S-matrix in the complex
frequency plane satisfies the general symmetry properties S(−z) = S−1(z) and S(−z⋆) = S⋆(z)
[38,39]. Figure 2 presents a plot of the modulus of the eigenvalues of the S-matrix in the complex
frequency plane for a lossless dielectric plate of thickness L and refractive index n2 = 3, embedded
in an infinite medium with n1 = 1, with both media having a relative magnetic permeability
equal to unity.

Fig. 2. Modulus (in logarithmic scale) of the eigenvalues of the S-matrix, as described by
Eq. (4), for a lossless dielectric plate of thickness L and refractive index n2 = 3, embedded
in an infinite medium with n1 = 1, in the complex-frequency plane. The relative magnetic
permeability of both media is equal to unity. The positions of the zeros and poles, given by
Eq. (6), are indicated by the bright cyan and red points, respectively.
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3. Coherent virtual absorption

3.1. Transient response to abrupt excitation cutoff

We assume an electromagnetic field of complex frequency ω+ iγ, where γ>0, incident on a plate
from both sides. At points xA and xB on the plate surfaces, this field is given by

Ein(t) = e−iωteγt
Θ(−t), (7)

where the Heaviside step function, Θ(−t), enforces an instantaneous cutoff at t = 0, to prevent the
incoming wave’s amplitude from growing indefinitely as t → ∞.

The field given by Eq. (7) can be expanded into real-frequency waves using the Fourier
transform, following the E ∼ exp(−iωt) convention, as follows

Ein(t) =
1

2π

∫ ∞

−∞

dω′˜︁E(ω′)e−iω′t,

where ˜︁E(ω′) =

∫ ∞

−∞

dt′Ein(t′)eiω′t′ =
−i

ω′ − ω − iγ
. Thus, Ein(t) takes the form

Ein(t) =
1

2πi

∫ ∞

−∞

dω′ 1
ω′ − ω − iγ

e−iω′t. (8)

We now calculate the outgoing field at the left and right edges of the plate, choosing the incident
complex frequency (ω + iγ)n2L/c ≡ z to be exactly at a zero, z+p , of s2, given by Eq. (6) for ν = p.
Since s2 corresponds to the eigenvector v2 = (1 1)T, the incoming waves are identical on both
sides of the plate, and so are the outgoing waves. From Eqs. (1) and (8), setting τ ≡ ct/(n2L), the
outgoing field Eout takes the form

Eout(τ) =
1

2πi

∫ ∞

−∞

dz′
s2(z′)
z′ − z+p

e−iz′τ . (9)

This integral can be analytically evaluated in the complex plane using Jordan’s lemma in
conjunction with the residue theorem [40].

For τ<0, by Jordan’s lemma, we close the integration path of Eq. (9) with a semicircular
contour CR = {Reiθ |θ ∈ [0, π]} of radius R → ∞ in the upper complex half-plane. From Eq. (6)
(see also Fig. 2) it is evident that all poles of s2 are located in the lower complex half-plane. Thus,
the only pole inside the integration path is at z+p , leading to

Eout(τ) =
1

2πi
(2πi)s2(z+p )e

−iz+pτ = 0, τ<0. (10)

As expected, selecting the incident complex frequency at a zero of s2 is the key to achieving
coherent perfect absorption. Since Eout = 0 for τ<0, all incident radiation remains stored within
the plate during illumination.

For τ>0, by Jordan’s lemma, the integration path of Eq. (9) can be closed with a semicircular
contour of infinite radius in the lower complex half-plane, enclosing the simple poles of
s2(z) = [ξ exp(iz) − 1]/[ξ − exp(iz)] at z = z−ν . Using Eq. (6) and the relation exp(iz−ν ) = ξ, the
residue at each pole takes the form

Rν =
1

z−ν − z+p
ξeiz−ν − 1
−ieiz−ν

e−iz−ντ

=
−1

2π(ν − p) − 2i ln ξ
ξ2 − 1

iξ
e−2πiντe−(ln ξ)τ .
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From residue theorem, setting n ≡ p − ν, we obtain

Eout(τ) =
1

2πi
(−2πi)

∞∑︂
ν=−∞

Rν

= −i
ξ2 − 1
2πξ

e−2πipτe−(ln ξ)τ
∞∑︂

n=−∞

e2πinτ

−i ln ξ
π − n

.
(11)

It can be shown (see Appendix) that the infinite series
∑︁∞

n=−∞ exp(2πinτ)/(z − n), with
z ∈ C \ Z, represents the Fourier expansion of 2πif (τ), where f (τ) is a periodic piecewise
continuous function on [0, 1] given by exp(2πizτ)/[exp(2πiz − 1]. This relationship also results
from the properties of the Hurwitz-Lerch zeta function, although under the more restrictive
condition that |z|<1 [41]. Using this identity, Eq. (11) for τ>0 yields Eout(τ) = e−2πipτξ(τ−1−2 ⌊τ ⌋),
where ⌊τ⌋ denotes the integer part of τ. Therefore, for incident waves described by Eq. (7) with
ωn2L/c = 2pπ, p ∈ Z, and γn2L/c = ln ξ, the outgoing waves are given by the closed-form
expression

Eout(τ) = e−2πipτξτ−1−2 ⌊τ ⌋
Θ(τ). (12)

Figure 3 illustrates the time variation of the electric field for the incoming and outgoing
radiation at points xA and xB on the surfaces of a plate of thickness L and refractive index
n2 = 3 embedded in a medium with n1 = 1 (we assume that both media have a relative magnetic
permeability equal to unity), as given by Eqs. (7) and (12), respectively. The discontinuities of
Eout(τ) that occur at τ ∈ N: limϵ→0[Eout(τ + ϵ) − Eout(τ − ϵ)] = ξ

−τ−1 − ξ−τ+1 for τ ∈ N arise
from the instantaneous interruption of the excitation. In fact, this unnatural discontinuity of
Ein(τ) at τ = 0 is conveyed to the outgoing waves, appearing at integer multiples of the time
t = n2L/c, i.e. τ = 1, which is the time it takes for the wave to travel between the two edges
of the plate. In the case of continuous excitation, Eout is also continuous (see Subsection 3.2).
It is worth noting that, as implied by Eqs. (7) and (12) and illustrated in Fig. 3, the outgoing
field at time τ is equal to the incident field at τ − 1 − 2⌊τ⌋. In the bottom diagram of Fig. 3 we
present the electromagnetic energy inside the plate as a function of time, which is proportional to∫

dt{Re[E(t)]}2. For the duration of illumination, t<0, all incoming radiation is stored in the
plate since Eout = 0. In the absence of losses, when the incident field is abruptly interrupted at
t = 0, the plate starts to emit radiation in distinct packets until all stored energy is completely
depleted.

3.2. Transient response to smoothed excitation cutoff

In order to study a more realistic excitation, let us consider an incident field of complex frequency
ω + iγ, γ>0, that starts to decay at t = 0 at an exponential rate of Γ ≡ αγ, α ∈ R\{1}. At points
xA and xB on the surfaces of the plate, this field has the form

Ein(t) = e−iωteγt
Θ(−t) + e−iωte−ΓtΘ(t) . (13)

By applying a Fourier transform we obtain

Ein(t) =
1

2πi

∫ ∞

−∞

dω′

[︃
1

ω′ − ω − iγ
−

1
ω′ − ω + iΓ

]︃
e−iω′t. (14)

Following the same steps taken after Eq. (8), the outgoing field is written as

Eout(τ) =
1

2πi

∫ ∞

−∞

dz′
s2(z′)
z′ − z+p

e−iz′τ

−
1

2πi

∫ ∞

−∞

dz′
s2(z′)
z′ − zΓ

e−iz′τ ≡ EI
out(τ) + EII

out(τ) ,
(15)
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Fig. 3. Upper diagrams: Time evolution of the real-valued electric field (in arbitrary units)
observed at points xA and xB on the surfaces of a plate with thickness L and refractive
index n2 = 3, embedded in a medium with n1 = 1 (both media have a relative magnetic
permeability equal to unity), upon a complex-frequency excitation given by Eq. (7) with
ωn2L/c = 10π and γn2L/c = ln ξ. Bottom diagram: Corresponding variation of the
electromagnetic energy inside the plate (in arbitrary units).

where zΓ ≡ (ω − iΓ)n2L/c = 2pπ − iα ln ξ. The first integral, EI
out(τ), is the same as in Eq. (9)

and will obviously lead to the result of Eq. (12). The poles of the integrand of the second integral,
which yields EII

out(τ), are those of s2 given by Eq. (4), plus the simple pole at z = zΓ, which is
also in the lower complex half-plane.

From Jordan’s lemma, for τ<0, the integration path can be closed with a semicircular contour of
infinite radius in the upper half-plane, and the residue theorem yields Eout(τ) = EI

out(τ)+EII
out(τ) =

0, since EI
out(τ) = 0 from Eq. (10) and the integrand that produces EII

out(τ) has no poles in the
upper complex half-plane.

Regarding EII
out(τ) when τ>0, by Jordan’s lemma the integration path can be closed with a

semicircular contour of infinite radius in the lower half-plane and the residues at the poles zΓ and
z−ν involved take the form

RΓ =
ξeizΓ − 1
ξ − eizΓ

e−izΓτ and Rν =
1

z−ν − zΓ
ξ2 − 1
−iξ

e−iz−ντ ,

respectively. Then, by applying the residue theorem we obtain

EII
out(τ) = −

1
2πi

(−2πi)RΓ −
1

2πi
(−2πi)

∞∑︂
ν=−∞

Rν

= RΓ + i
ξ2 − 1
2πξ

e−(ln ξ)τ
∞∑︂

ν=−∞

e2πiντ

−zΓ−i ln ξ
2π − ν

.
(16)



Research Article Vol. 33, No. 13 / 30 Jun 2025 / Optics Express 28339

The infinite series in Eq. (16) is essentially identical to the one in Eq. (11) and can be handled
in the same way. Consequently, after some straightforward algebra, the scattered field takes its
final form

Eout(τ) = e−2πipτ
[︃
ξτ−1−2 ⌊τ ⌋ − ξ−ατ−1 ξ

α+1 − 1
ξα−1 − 1

− (ξ2 − 1)
ξ−α(τ−⌊τ ⌋)−⌊τ ⌋−1

ξ1−α − 1

]︃
Θ(τ) . (17)

We recall that ωn2L/c = 2pπ, p ∈ Z, γn2L/c = ln ξ and Γ = αγ with α ∈ R\{1}. For α = 1,
the pole at zΓ coincides with one of the poles of s2(z), resulting in a second-order pole that
requires separate and distinct treatment in the residue calculation [40].

Interestingly, unlike the outgoing field in Eq. (12), which exhibits discontinuities at τ ∈ N,
the field in Eq. (17) remains continuous due to the smooth nature of the excitation. In fact, it is
straightforward to show that, in this case, limϵ→0[Eout(τ + ϵ) − Eout(τ − ϵ)] = 0 for τ ∈ N. It is
also worth noting that, in the limit α→ ∞, corresponding to an abrupt cutoff of the excitation, we
recover Eq. (12). Moreover, for α = −1, which represents an excitation that grows exponentially
without bound as time evolves, the outgoing field vanishes identically.

Fig. 4. Time evolution of the real-valued outgoing electric field (in arbitrary units) observed
at points xA and xB on the surfaces of a plate with thickness L and refractive index n2 = 3,
embedded in a medium with n1 = 1 (both media have a relative magnetic permeability
equal to unity), upon a complex-frequency excitation given by Eq. (13) with γn2L/c = ln ξ,
Γ = 15γ,ωn2L/c = 10π (top) andωn2L/c = 4π (bottom). The analytical solution of Eq. (17)
is depicted by solid lines, while the finite-difference-time-domain (FDTD) simulations, are
represented by dotted lines.

Figure 4 shows the time variation of the outgoing fields, given by Eq. (17), in the same system
as in Fig. 3, for an excitation defined by Eq. (13) with γn2L/c = ln ξ, Γ = 15γ, ωn2L/c = 10π
(top plot) and ωn2L/c = 4π (bottom plot). When comparing Fig. 4 with Fig. 3, it is evident that
the discontinuities of Eout are no longer present. However, the envelope function in Eq. (17) still
leads to outgoing waves appearing in distinct packets, each with a duration of t = n2L/c, i.e.
τ = 1, as can be clearly seen in the upper plot of Fig. 4. Moreover, smoothing the excitation for
τ>0 facilitates finite-difference simulations by removing discontinuities. Figure 4 presents the
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analytical solutions alongside the corresponding simulations, demonstrating excellent agreement
for the two different values of ω considered. The upper plot depicts the outgoing field for
ωn2L/c = 10π, providing a comparison with the abrupt excitation cutoff shown in Fig. 3. The
bottom plot, with ωn2L/c = 4π and the previously mentioned choice of Γ = 15γ, was designed to
approximate the excitation employed by Baranov et al. [3], who used a Gaussian decay, yielding
very similar results for the outgoing fields.

4. Conclusion

In summary, we presented a comprehensive analysis of the effect of coherent virtual absorption
in a lossless dielectric plate. Starting with the Fourier transform of the excitation function, we
applied complex integration techniques, including Jordan’s lemma and the residue theorem, to
analytically derive exact closed-form expressions for the transient response of the plate under
complex-frequency excitation. This derivation fully accounts for the analytic structure of the
scattering S-matrix in the complex-frequency plane, ensuring a rigorous characterization of the
system’s behavior. The application of the residue theorem leads to infinite series, the summation
of which presents a key challenge in the derivation but is successfully addressed within the
analytical framework, resulting in formulas that show excellent agreement with numerical
simulations and provide deep physical insight into the underlying mechanisms.

Furthermore, our rigorous theoretical analysis not only confirms earlier observations, but also
uncovers several intriguing phenomena that had been previously overlooked. Notably, we identify
discontinuities in the outgoing scattered field and reveal that the stored energy is released in
distinct packets. These findings offer a deeper understanding of the transient dynamics of the
system and may inspire further investigations.

Beyond the specific case of a lossless dielectric plate, our analytical approach is highly versatile
and can be applied to various scattering structures and physical systems, offering a robust
framework for further theoretical and experimental research in this field.

Appendix

Let us consider the function
f (τ) =

e2πizτ

e2πiz − 1
, (18)

where z ∈ C\Z, defined for 0<τ<1, and satisfying the periodicity condition f (τ + 1) = f (τ). This
function exhibits discontinuities of first kind for integer values of τ. The Fourier series expansion
of f (τ) is given by

f (τ) =
∞∑︂

n=−∞

˜︁fne2πinτ , (19)

where˜︁fn = ∫ 1

0
dτe−2πinτ f (τ) =

1
2πi(z − n)

. Therefore,

2πif (τ) =
∞∑︂

n=−∞

e2πinτ

z − n
, z ∈ C\Z. (20)

Funding. Hellenic Foundation for Research and Innovation (4509, 16909); General Secretariat for Research and
Innovation.

Disclosures. The authors declare no conflicts of interest.

Data availability. Data underlying the results presented in this paper are not publicly available at this time but may
be obtained from the authors upon reasonable request.



Research Article Vol. 33, No. 13 / 30 Jun 2025 / Optics Express 28341

References
1. K. C. Huang, E. Lidorikis, X. Jiang, et al., “Nature of lossy bloch states in polaritonic photonic crystals,” Phys. Rev.

B 69(19), 195111 (2004).
2. K. L. Tsakmakidis, T. W. Pickering, J. M. Hamm, et al., “Completely stopped and dispersionless light in plasmonic

waveguides,” Phys. Rev. Lett. 112(16), 167401 (2014).
3. D. G. Baranov, A. Krasnok, and A. Alù, “Coherent virtual absorption based on complex zero excitation for ideal light

capturing,” Optica 4(12), 1457–1461 (2017).
4. F. Guan, X. Guo, K. Zeng, et al., “Overcoming losses in superlenses with synthetic waves of complex frequency,”

Science 381(6659), 766–771 (2023).
5. S. Kim, Y.-G. Peng, S. Yves, et al., “Loss compensation and superresolution in metamaterials with excitations at

complex frequencies,” Phys. Rev. X 13(4), 041024 (2023).
6. F. Guan, X. Guo, S. Zhang, et al., “Compensating losses in polariton propagation with synthesized complex frequency

excitation,” Nat. Mater. 23(4), 506–511 (2024).
7. S. Longhi, “Coherent virtual absorption for discretized light,” Opt. Lett. 43(9), 2122–2125 (2018).
8. G. Trainiti, Y. Ra’di, M. Ruzzene, et al., “Coherent virtual absorption of elastodynamic waves,” Sci. Adv. 5(8),

eaaw3255 (2019).
9. Q. Zhong, L. Simonson, T. Kottos, et al., “Coherent virtual absorption of light in microring resonators,” Phys. Rev.

Res. 2(1), 013362 (2020).
10. A. Marini, D. Ramaccia, A. Toscano, et al., “Metasurface-bounded open cavities supporting virtual absorption:

free-space energy accumulation in lossless systems,” Opt. Lett. 45(11), 3147–3150 (2020).
11. A. V. Marini, D. Ramaccia, A. Toscano, et al., “Metasurface virtual absorbers: unveiling operative conditions through

equivalent lumped circuit model,” EPJ Appl. Metamat. 8(3), 3 (2021).
12. A. V. Marini, D. Ramaccia, A. Toscano, et al., “Perfect matching of reactive loads through complex frequencies:

From circuital analysis to experiments,” IEEE Trans. Antennas Propag. 70(10), 9641–9651 (2022).
13. A. Farhi, A. Mekawy, A. Alú, et al., “Excitation of absorbing exceptional points in the time domain,” Phys. Rev. A

106(3), L031503 (2022).
14. T. Delage, J. Sokoloff, O. Pascal, et al., “Plasma ignition via high-power virtual perfect absorption,” ACS Photonics

10(10), 3781–3788 (2023).
15. D. V. Novitsky and A. S. Shalin, “Virtual perfect absorption in resonant media and their PT-symmetric generaliza-

tions,” Phys. Rev. A 108(5), 053513 (2023).
16. Y. Ra’di, A. Krasnok, and A. Alú, “Virtual critical coupling,” ACS Photonics 7(6), 1468–1475 (2020).
17. T. Delage, O. Pascal, J. Sokoloff, et al., “Experimental demonstration of virtual critical coupling to a single-mode

microwave cavity,” J. Appl. Phys. 132(15), 153105 (2022).
18. S. Lepeshov and A. Krasnok, “Virtual optical pulling force,” Optica 7(8), 1024–1030 (2020).
19. H. Li, A. Mekawy, A. Krasnok, et al., “Virtual parity-time symmetry,” Phys. Rev. Lett. 124(19), 193901 (2020).
20. Z. Chen, H. He, H. Li, et al., “Observation of parity-time symmetry for evanescent waves,” Commun. Phys. 7(1), 339

(2024).
21. R. Ali, “Lighting of a monochromatic scatterer with virtual gain,” Phys. Scr. 96(9), 095501 (2021).
22. A. M. B. Bradley, W. Tuxbury, and T. Kottos, “Directed emission from uniformly excited non-hermitian photonic

meta-structures,” Opt. Lett. 47(22), 5913–5916 (2022).
23. Z. Gu, H. Gao, H. Xue, et al., “Transient non-hermitian skin effect,” Nat. Commun. 13(1), 7668 (2022).
24. S. Kim, S. Lepeshov, A. Krasnok, et al., “Beyond bounds on light scattering with complex frequency excitations,”

Phys. Rev. Lett. 129(20), 203601 (2022).
25. C. Rasmussen, M. I. N. Rosa, J. Lewton, et al., “A lossless sink based on complex frequency excitations,” Adv. Sci.

10(28), 2301811 (2023).
26. D. V. Novitsky, “Tunable virtual gain in resonantly absorbing media,” Phys. Rev. A 107(1), 013516 (2023).
27. R. Ali, T. P. M. Alegre, and G. S. Wiederhecker, “Enhancing the goos-hänchen and spin-hall shifts in planar and

spherical structures through complex-frequency excitations,” Phys. Rev. B 110(8), 085403 (2024).
28. G. P. Zouros, I. Loulas, E. Almpanis, et al., “Anisotropic virtual gain and large tuning of particles’ scattering by

complex-frequency excitations,” Commun. Phys. 7(1), 283 (2024).
29. J. Hinney, S. Kim, G. J. K. Flatt, et al., “Efficient excitation and control of integrated photonic circuits with virtual

critical coupling,” Nat. Commun. 15(1), 2741 (2024).
30. H. Gao, W. Zhu, H. Xue, et al., “Controlling acoustic non-hermitian skin effect via synthetic magnetic fields,” Appl.

Phys. Rev. 11(3), 031410 (2024).
31. T. Jiang, C. Zhang, R.-Y. Zhang, et al., “Observation of non-hermitian boundary induced hybrid skin-topological

effect excited by synthetic complex frequencies,” Nat. Commun. 15(1), 10863 (2024).
32. K. Zeng, C. Wu, X. Guo, et al., “Synthesized complex-frequency excitation for ultrasensitive molecular sensing,”

eLight 4(1), 1 (2024).
33. X. Zhu, D. Liao, P. Tang, et al., “Decoupled dipole arrays empowered by invisible complex poles in epsilon-near-zero

metamaterials,” Adv. Funct. Mater. 35(1), 2412057 (2025).
34. J.-X. Zhong, P. F. de Castro, T. Lu, et al., “Higher-order skin effect and its observation in an acoustic kagome lattice,”

Phys. Rev. B 111(1), 014314 (2025).

https://doi.org/10.1103/PhysRevB.69.195111
https://doi.org/10.1103/PhysRevB.69.195111
https://doi.org/10.1103/PhysRevLett.112.167401
https://doi.org/10.1364/OPTICA.4.001457
https://doi.org/10.1126/science.adi1267
https://doi.org/10.1103/PhysRevX.13.041024
https://doi.org/10.1038/s41563-023-01787-8
https://doi.org/10.1364/OL.43.002122
https://doi.org/10.1126/sciadv.aaw3255
https://doi.org/10.1103/PhysRevResearch.2.013362
https://doi.org/10.1103/PhysRevResearch.2.013362
https://doi.org/10.1364/OL.389389
https://doi.org/10.1051/epjam/2020014
https://doi.org/10.1109/TAP.2022.3177571
https://doi.org/10.1103/PhysRevA.106.L031503
https://doi.org/10.1021/acsphotonics.3c01023
https://doi.org/10.1103/PhysRevA.108.053513
https://doi.org/10.1021/acsphotonics.0c00165
https://doi.org/10.1063/5.0107041
https://doi.org/10.1364/OPTICA.391569
https://doi.org/10.1103/PhysRevLett.124.193901
https://doi.org/10.1038/s42005-024-01816-1
https://doi.org/10.1088/1402-4896/abf8eb
https://doi.org/10.1364/OL.475611
https://doi.org/10.1038/s41467-022-35448-2
https://doi.org/10.1103/PhysRevLett.129.203601
https://doi.org/10.1002/advs.202301811
https://doi.org/10.1103/PhysRevA.107.013516
https://doi.org/10.1103/PhysRevB.110.085403
https://doi.org/10.1038/s42005-024-01772-w
https://doi.org/10.1038/s41467-024-46908-2
https://doi.org/10.1063/5.0213867
https://doi.org/10.1063/5.0213867
https://doi.org/10.1038/s41467-024-55218-6
https://doi.org/10.1186/s43593-023-00058-y
https://doi.org/10.1002/adfm.202412057
https://doi.org/10.1103/PhysRevB.111.014314


Research Article Vol. 33, No. 13 / 30 Jun 2025 / Optics Express 28342

35. F. Guan, Y. Yang, H.-C. Chan, et al., “Excitation of longitudinal bound states in a weyl metamaterial cavity,” Laser &
Photonics Reviews 19(8), 2400914 (2025).

36. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of
Light (Cambridge University, 1999), 7th ed.

37. G. Gantzounis and N. Stefanou, “Layer-multiple-scattering method for photonic crystals of nonspherical particles,”
Phys. Rev. B 73(3), 035115 (2006).

38. N. G. van Kampen, “s-matrix and causality condition. i. maxwell field,” Phys. Rev. 89(5), 1072–1079 (1953).
39. N. G. van Kampen, “The symmetry relation of the s matrix in the complex plane,” Physica 20(1-6), 115–123 (1954).
40. M. J. Ablowitz and A. S. Fokas, “Complex Variables: Introduction and Applications,” Cambridge Texts in Applied

Mathematics (Cambridge University, 2003), 2nd ed.
41. S. Kanemitsu, M. Katsurada, and M. Yoshimoto, “On the Hurwitz—Lerch zeta-function,” Aequ. math. 59(1), 1–19

(2000).

https://doi.org/10.1002/lpor.202400914
https://doi.org/10.1002/lpor.202400914
https://doi.org/10.1103/PhysRevB.73.035115
https://doi.org/10.1103/PhysRev.89.1072
https://doi.org/10.1016/S0031-8914(54)80021-8
https://doi.org/10.1007/PL00000117

