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ABSTRACT
Rainbow trapping is a wave localization phenomenon in 
which different frequencies are spatially separated and con-
fined by engineering dispersion through structural gradients. 
Initially demonstrated in tapered metamaterial systems, this 
concept has since been extended to plasmonic, photonic, 
acoustic, and elastic platforms, where graded-index profiles, 
chirped periodicities, and tapered geometries are used to 
control the group velocity and localize wave components at 
distinct spatial positions. These implementations enable high-
resolution spectral manipulation and form the foundation for 
broadband wave control. More recently, topological rainbow 
trapping has emerged as a robust alternative, leveraging topo-
logically protected states to achieve disorder-immune fre-
quency localization. This approach offers enhanced resilience 
to fabrication imperfections and opens new possibilities for 
scalable, integrated wave-based devices. In this review, we 
examine the physical mechanisms, system-specific implemen-
tations, and recent advances in both conventional and topo-
logical rainbow trapping. We also highlight promising appli-
cations ranging from optical communication and wavelength 
multiplexing to acoustic wave manipulation and vibrational 
energy harvesting and discuss key challenges and future di-
rections in this rapidly evolving field.
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GRAPHICAL ABSTRACT

1. Introduction

Controlling wave dispersion is central to the manipulation of electromag-
netic, acoustic, and elastic waves across diverse physical systems [1,2]. Among 
dispersion-based techniques, rainbow trapping enables spatial separation 
and localization of different wave frequencies through spatial gradients in 
structural or material properties [3–8]. These gradients include variations in 
refractive index, waveguide geometry, resonator dimensions, inter-element 
spacing, or mechanical stiffness, depending on the wave platform. By modu-
lating the local dispersion relation, such gradients induce a gradual reduction 
in group velocity for each frequency component. When the group velocity 
(vg = d𝜔/dk) of a specific frequency approaches zero, that component be-
comes confined at a distinct spatial location, resulting in spatially resolved 
spectral localization, the hallmark of the rainbow trapping effect [9–18]. This 
phenomenon is governed by position-dependent dispersion and is achieved 
through adiabatic slowing in passive structures [19–27], without requiring 
time-dependent or externally driven modulation. Rainbow trapping thus en-
ables broadband wave manipulation and underpins a range of applications in 
multiplexing, sensing, energy harvesting, and slow-light devices [28–30].

Rainbow trapping has been implemented across a wide range of physical 
platforms, including plasmonic systems [31–53], photonic crystal (PC) struc-
tures [54–59], acoustic media [60–66], elastic media [67–72], and topological 
systems [73–82], each leveraging spatial gradients to localize wave energy 
through dispersion tuning. In plasmonic rainbow trapping (PRT), surface 
plasmon polaritons (SPPs) are manipulated through engineered geometries 
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to achieve frequency-selective light confinement. This is accomplished us-
ing graded grooves, tapered metal – insulator – metal (MIM) waveguides, 
hyperbolic metamaterials, or graphene-integrated gratings. These structures 
enable strong field confinement, subwavelength localization, and precise 
spectral control, making them particularly suited for high-resolution spec-
troscopy and optical buffering [46,83]. Photonic crystal rainbow trapping 
(PCRT) typically utilizes chirped or tapered periodic structures and gradient-
index profiles to reshape the band structure and enable broadband light 
trapping, with demonstrated use in wavelength demultiplexing, dynamic fre-
quency routing, and ultrafast light buffering [84–88]. In acoustic rainbow 
trapping (ART), spatial gradients in impedance or lattice spacing are used 
to slow and localize sound waves, often through graded-index metamaterials 
or coiled resonator arrays [89,90]. Elastic rainbow trapping (ERT), by con-
trast, involves structural variations such as graded stiffness, mass loading, or 
resonator height to confine mechanical vibrations at specific positions – com-
monly realized in notched beams or graded resonator arrays [91,92]. Both 
approaches are particularly suited for applications in energy harvesting and 
vibration control [93–95]. Despite differences in wave type and implementa-
tion, all platforms share the core principle of dispersion engineering through 
structural gradients to achieve frequency-dependent localization.

Conventional rainbow trapping structures, however, are susceptible to 
imperfections such as surface roughness, misalignments, or fabrication dis-
orders, which can disrupt group velocity near the trapping point and sig-
nificantly degrade performance [4]. To address these limitations, recent re-
search has introduced the concept of topological rainbow trapping [96–103], 
which integrates rainbow trapping mechanisms with topologically protected 
states to achieve robust frequency-dependent localization [104–109]. These 
topological states arise at interfaces between regions with distinct topolog-
ical phases [110–112] and exhibit confinement that remains stable against 
backscattering and fabrication variations [113–115]. By spatially varying in-
terface geometry, lattice deformation, or coupling strength at the topological 
wall, the local dispersion of topological states can be tuned without altering 
the global topological phase, enabling frequency-selective localization along 
the interface [116–118]. Unlike conventional systems that rely on adiabatic 
slowing of bulk-guided modes, topological rainbow trapping manipulates the 
dispersion of pre-existing interface states, resulting in enhanced precision and 
robustness. This framework provides a compelling path toward scalable, high-
performance wave-based devices capable of operating reliably under practical 
manufacturing conditions.

This review provides a comprehensive overview of the key physical mech-
anisms behind rainbow trapping across various wave systems. We discuss the 
physical principles of frequency-selective localization enabled by dispersion 
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engineering and examine representative implementations in plasmonic, pho-
tonic, acoustic, and elastic platforms. Special attention is given to topological 
rainbow trapping, including its underlying physics and distinct advantages, 
particularly its robustness against structural imperfections and backscatter-
ing. We also highlight recent progress in mitigating energy dissipation and 
addressing scalability challenges, which are critical for real-world integra-
tion. Finally, we outline the diverse rainbow trapping applications, including 
optical communication, optical buffering, dynamic frequency routing, and 
energy harvesting. With its broad applicability, rainbow trapping is poised to 
become a foundational strategy for advanced wave control and the develop-
ment of next-generation wave-based technologies.

2. Physical basis of rainbow trapping: a dispersion engineering 
framework

Rainbow trapping is, at its core, a manifestation of dispersion engineering, 
where the wave dispersion relation 𝜔 (k) is spatially tailored to control the 
group velocity vg . This modulation causes waves of different frequencies to 
decelerate and become spatially localized at different positions along a struc-
ture, forming a ‘rainbow’ of confined frequencies. The principle is analogous 
to angular dispersion in a prism but is implemented via adiabatic slowing 
through structural gradients.

Two principal dispersion mechanisms govern rainbow trapping: Flat-
band-induced trapping, where vg → 0 near a band edge (typically at k = 0 or 
k = 𝜋/a), as shown in Figure 1(a). Here, spatial gradients gradually shift the 
band structure until the operating frequency aligns with the flat region of the 
dispersion curve, resulting in strong field confinement [31]. This mechanism 
is prevalent in periodic systems (e.g. Bragg structures) or in waveguides with 
cutoff conditions (e.g. SPP). By adjusting parameters such as lattice spacing, 
refractive index contrast, or introducing localized resonators, the band flat-
tening can be optimized for enhanced trapping efficiency and is well suited 
for broadband slow-light, sensing, and nonlinear enhancement. This spatial 
separation of frequencies forms the spectral ‘rainbow’ profile.

Inflection-point-induced trapping, where vg  vanishes at a turning point 
within the band (i.e. an inflection point), not at its edge as depicted in 
Figure 1(b). In this case, the curvature of 𝜔 (k) changes sign, causing 
waves to temporarily slow and reverse direction without permanent trap-
ping [119,120]. The energy resides longer near the inflection point due to a 
local minimum in group velocity, offering a temporal delay and compact fre-
quency routing. This mechanism, though resulting in weaker confinement, 
is useful for dynamic spectral control. It is often observed in systems involv-
ing resonant hybridization or coupled-mode dispersion. These two trapping 
mechanisms are not mutually exclusive and can often coexist within the same 
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Figure 1. Dispersion engineering principles in rainbow trapping. (a) In flat-band-induced trap-
ping, different frequency components experience vanishing group velocity near a band edge, 
leading to spectral localization and energy accumulation. (b) In inflection-point-induced trapping, 
the group velocity becomes zero at a turning point in the dispersion relation, enabling temporary 
localization and wave reversal but weaker confinement.

system. Design strategies such as tapering, chirping, or local modulation of 
unit cell geometry can be employed to tailor either type, depending on the 
application requirements.

Rainbow trapping is implemented differently across physical platforms. 
In plasmonic systems, SPPs exhibit strong geometry-dependent dispersion, 
enabling flat-band trapping through graded groove depths or widths. In pho-
tonic crystals, both mechanisms are accessible. Flat-band trapping occurs 
near photonic band edges using chirped periodicity or tapered waveguides. 
Inflection-point-based trapping arises in coupled-cavity arrays or Dirac-
like dispersion regimes. In acoustic and elastic media, Bragg-type periodic 
structures yield flat-band trapping through spatially graded lattice param-
eters, while locally resonant metamaterials enable inflection-point slowing 
via graded stiffness, mass, or resonator spacing. Finally, in topological sys-
tems, wave localization emerges from topologically protected interface states 
rather than bulk band structures. However, even in these systems, the group 
velocity and frequency of edge or corner states can be spatially modu-
lated via structural gradients, allowing rainbow trapping without altering 
the global topological phase. Depending on the structure, the dispersion of 
topological states may resemble flat-band or inflection-point profiles. Despite 
these differences, all systems exploit spatial dispersion shaping to achieve 
frequency-selective localization.

In this review, we distinguish three key structural concepts commonly used 
in rainbow trapping designs: graded-index (GI), chirped, and tapered. GI 
structures exhibit a continuous variation in effective refractive index or its 
analogs such as acoustic impedance or elastic modulus, along the wave prop-
agation direction. Chirped structures involve a gradual change in periodic 
parameters, such as lattice spacing or resonator spacing, along the direction of 
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propagation. Tapered structures feature smooth geometric variations trans-
verse to the propagation direction, such as changes in waveguide width or 
resonator dimensions. Each approach modulates the local band structure to 
enable adiabatic slowing and frequency-selective localization through disper-
sion engineering. While these mechanisms are often combined in practice, we 
apply the terminology distinctly and consistently throughout this review.

3. Plasmonic and metamaterial rainbow trapping

Plasmonic rainbow trapping (PRT) exploits the dispersion properties of SPPs 
to achieve spatial separation and confinement of optical frequencies. In this 
implementation, the variations in geometry, such as groove depth, width, ma-
terial gain, or resonator geometry, modulate the effective refractive index and 
shift the SPP cutoff frequency spatially, which enables precise control of group 
velocity. Accordingly, different frequencies are trapped at different positions, 
producing a nanoscale ‘rainbow’ of confined light.

GI structures form the foundation of many rainbow trapping systems, us-
ing spatial variations in refractive index to manipulate light. These platforms 
are especially valuable for high-resolution spectroscopy, optical buffering, 
and nonlinear optical devices. Gan, Ding et al. [31] presented one of the 
earliest demonstrations of PRT using a grating waveguide with a groove 
depth gradient from 140 to 230 nm. Simulations revealed multi-wavelength 
confinement from 1.33 to 1.65 m, with each wavelength localized where 
the group velocity approached zero near the cutoff, establishing the ba-
sis for geometry-induced SPP control (Figure 2(a)). Wang, Lu et al. [32] 
further enhanced tapered MIM waveguides by incorporating gain materi-
als to compensate for losses. Group velocity was reduced below 0.01c, and 
near-complete light trapping was observed when gain matched the intrinsic 
absorption, demonstrating the feasibility of ultracompact slow-light buffers. 
Montazeri, Fang, et al. [33] presented a unique method via gradient groove-
width for broadband PRT (Figure 2(b)). Their theoretical and numerical 
analyses revealed that sub-150 nm grooves enable broadband visible-range 
trapping through strong intragroove field coupling, while also simplifying 
fabrication compared to depth grading, making the approach practical for 
spectroscopic and sensing applications. Liu, Kanyang, et al. [53] extended 
these principles to highly doped silicon gratings, which provide long oscil-
lation lifetimes of light trapping, enhancing slow-light effects for compact 
optical buffers and nonlinear optics. For typical GI structures, Dixon, Mon-
tazeri, et al. [34] provided a framework for fast, versatile analytical design 
and facile fabrication of ultrathin rectangular nanogrooves, structured into 
rainbow trapping arrays. Using Fabry – Perot modeling and simulations, they 
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Figure 2. Gradient-based plasmonic rainbow trapping platforms utilize spatial geometric mod-
ulation for spectral localization. (a) Simulated electric field distributions |Ez| at wavelengths 𝜆 =
1.33, 1.45, 1.55, and1mu1.65 𝜇m in a metallic grating waveguide with groove depth graded from 
140 to 230 nm. Each wavelength is trapped at a different spatial location due to groove-depth-
induced cutoff shifts, where the group velocity approaches zero near the trapping point [31]. (b) 
Schematic of gradient groove profiles (left) and simulated dispersion curves for various groove 
widths (right). Each incident wavelength (700500 nm)  is localized at a different spatial position 
along the grating, demonstrating broadband visible-range rainbow trapping [33]. (c) Width-
graded metallic grating designed for multi-wavelength surface-enhanced Raman spectroscopy 
(SERS). Simulated field maps show spatial localization for different excitation wavelengths (532, 
638, and 785 nm), with local field enhancements in the range of 106 –107 [35]. (d) Graded triangu-
lar groove array with depth and width modulation, supporting adiabatic energy transfer between 
grooves. SERS measurements reveal strong near-field localization and enhancement factors up to 
8.5 × 109  under 532 nm excitation [36]. 

demonstrated local field enhancements near 103 and validated spectral con-
finement through far-field hyperspectral microscopy, confirming the design’s 
suitability for broadband nanoplasmonic platforms.

For innovative GI designs, Liu, Wang, et al. [49] combined gratings with 
thermo-optic tuning to dynamically control trapping and releasing mecha-
nisms. Their approach used index gradients induced by controlled tempera-
ture fields, enabling reconfigurable modulation suitable for integrated delay 
lines. The study by Zanjani, Shayegannia, et al. [35] leveraged PRT for multi-
spectral surface-enhanced Raman spectroscopy (SERS). The system enhances 
Raman signal intensity over a broad spectral range by confining different 
wavelengths to distinct spatial locations, as shown in Figure 2(c). It demon-
strated SERS enhancement factors up to 107 across 532, 638, and 785 nm
lasers under practical fluidic conditions, confirming real-time spectral trap-
ping. Zeineddine, Shayegannia, et al. [36] recently introduced graded trian-
gular nano-gratings as an alternative to rectangular geometries for superior 
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SERS efficiency. The graded gratings allow the adiabatic transformation of 
SPPs, reducing losses and enhancing nanofocus across a broad spectrum, 
as shown in Figure 2(d). Their structure achieved up to 8.5 × 109 enhance-
ment factors and consistent performance at visible wavelengths, particularly 
532 nm, supporting broader optical sensing applications.

Beyond passive geometric grading, several advanced rainbow trapping 
platforms have emerged to expand functionality, tunability, and operational 
bandwidth. These include nonreciprocal systems, graphene-based waveg-
uides, metasurfaces, and metamaterials, each introducing distinct physical 
mechanisms such as dynamic modulation or nonlinear response to further 
enhance light confinement. Nonreciprocal waveguides realize unidirectional 
trapping by time-reversal symmetry breaking. Liu and He [37] demonstrated 
trapped rainbows using a nonreciprocal waveguide under a tapered external 
magnetic field, offering robust wave localization even with fabrication disor-
ders. The concept relies on asymmetric dispersion relations by incorporating 
gyromagnetic materials or external magnetic fields (Figure 3(a)). Simulations 
revealed long-lived hotspots and disorder immunity, highlighting a scalable 
route for robust light confinement. Graphene-based PRT platforms offer dy-
namically tunable slow-light effects in the mid-infrared. Yin, Zhang, et al. [52] 
demonstrated adiabatic control of dispersion curves in a silica – graphene 
– silica configuration. Here, air-gap modulation tunes the equivalent per-
mittivity, enabling position-specific frequency localization through purely 
theoretical modeling. The study by Lu, Zeng, et al. [38] leveraged graphene’s 
tunable plasmonic properties to achieve high slowdown factors for SPPs. The 
system consists of graphene monolayers on silicon-based graded gratings, 
with tuning enabled via gate voltage. Their design reached a slowdown fac-
tor of ∼450 and a ∼2.1 m bandwidth in a compact subwavelength platform. 
Ghaderian and Habibzadeh-Sharif [39] focused on graphene-based waveg-
uides integrated with graded silicon gratings. High tunability is achieved via 
the chemical potential control of graphene, offering a slowdown factor of 
1270 and a trapping bandwidth of 3.5 m (Figure 3(b)). Their gradient de-
sign in graphene – SiO – Si structure represents one of the most tunable 
mid-infrared PRT systems suitable for dynamic optical storage, high-speed 
optical switches, and mid-infrared sensing. Xu, Shi, et al. [40] introduced 
gradient metasurfaces designed with split-ring resonators (SRRs) to im-
prove the oscillation lifetimes of trapped waves. Their experimental results 
confirmed long-lifetime resonance modes and spatial confinement via mag-
netoinductive channel coupling, enabling applications in multiplexing and 
optical filtering.
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Figure 3. Advanced and tunable rainbow trapping platforms utilizing nonreciprocity effects, 
graphene tunability, and metamaterial dispersion engineering for broadband, dynamic, and di-
rectional spectral localization. (a) Simulated electric field distributions |Ez| at different normalized 
angular frequencies (𝜔 = 𝜔0, 1.1𝜔0, and 1.2𝜔0) for a nonreciprocal waveguide. The tapered 
magnetic field applied to a yttrium–iron–garnet (YIG) substrate induces asymmetric disper-
sion, enabling unidirectional rainbow trapping and long-duration hotspot confinement [37]. (b) 
Graphene–Si grating waveguide featuring graded groove width and depth, with simulated elec-
tric field profiles at three mid-infrared wavelengths. Modulating the chemical potential allows 
dynamic dispersion tuning, achieving slowdown factors exceeding 1270 and a spectral trap-
ping bandwidth of 3.5 m [39]. (c) Hyperbolic metamaterial (HMM)-based structure formed from 
alternating Au/ZnO layers. The design supports full-color second harmonic generation (SHG), 
with electric field maps for visible excitation (470 – 650 nm) and SHG spectra showing conver-
sion efficiencies up to 1.13 × 106 and enhancement factors exceeding 50 using only 8.8 mW
input power [41]. (d) Schematic and simulation of a one-way THz waveguide composed of 
epsilon-negative (ENG) and epsilon-near-zero (ENZ) metamaterials bounded by perfect magnetic 
conductors (PMCs). The resulting exhibits strong field confinement, and directional transport [42]. 

Metamaterials offer engineered subwavelength structures to manipulate 
wave propagation, excelling in nonlinear optics, compact device integra-
tion, and high-density optical storage. Hu, Ji, et al. [48] proposed a hyper-
bolic metamaterial (HMM) design that overcomes the limitations of tra-
ditional IMI or MIM waveguides by leveraging hyperboloid iso-frequency 
surfaces to enhance photon harvesting and light-matter interactions. Li, Hu, 
et al. [41] extended this concept for broadband second harmonic genera-
tion (SHG). Their Au/ZnO HMM design demonstrated field enhancement 
across 470 – 650 nm and achieved SHG efficiencies over 1.13 × 10–6 with 
minimal input power, validating the potential of nonlinear PRT in ultra-
thin devices (Figure 3(c)). Xu, Xiao, et al. [42] presented broadband rainbow 
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trapping using epsilon-negative (ENG) and epsilon-near-zero (ENZ) meta-
materials. By coupling ENG/ENZ structures with perfect magnetic conductor 
boundaries, their waveguide achieved a threefold enhancement in trapping 
bandwidth and over five orders of magnitude in field intensification, sup-
porting THz waveguiding and energy harvesting (Figure 3(d)). Zhao, Wu, 
et al. [121] recently introduced spatially confined HMMs that localize dif-
ferent wavelengths into ribbon-like patterns, enabling high field intensities 
across a broad spectrum for optical modulation and storage. Across diverse 
implementations, rainbow trapping has evolved from theoretical constructs 
to experimentally validated platforms, including gratings, graphene-based 
waveguides, and metamaterials, each advancing tunability, spectral coverage, 
and field confinement. Graphene-based systems offer dynamic mid-infrared 
control via electrostatic or chemical tuning, while metamaterials such as 
HMM and ENG media extend trapping into the visible and THz regimes, en-
abling broadband responses. Nonreciprocal architectures add unidirectional 
light confinement through asymmetric dispersion engineering. Despite these 
advances, key challenges persist in reducing plasmonic losses and simplifying 
fabrication, especially for complex 3D gradients. Future progress will hinge on 
optimizing the trade-offs between loss, tunability, bandwidth, and scalability, 
potentially through hybrid materials and multi-physics co-design.

4. Photonic crystal rainbow trapping

Photonic crystal rainbow trapping (PCRT) emerges from the interplay 
between Bragg scattering and engineered dispersion [54–58], enabling 
frequency-selective spatial confinement of light. This is typically realized us-
ing three structural strategies: graded-index configurations that modulate the 
effective refractive index along the propagation axis, chirped periodicities 
that vary lattice constants or cell dimensions, and tapered waveguides that 
induce local bandgaps through gradual width modulation. These dispersion-
shaping techniques underpin slow-light enhancement [122–131], optical 
demultiplexing, and spatial light storage, as explored in the following studies.

For example, He, Wu, et al. [54] utilized the dynamic modulation of rain-
bow trapping in tapered PC waveguides. The structure was implemented 
using a low-symmetric dielectric lattice on a polystyrene substrate, and this 
effect is dynamically tuned using external voltage changes, leveraging the 
electro-optic effect, enabling controlled trapping and release of light. Sim-
ulations demonstrated selective confinement within a 5% bandwidth and 
showed the potential for active release of trapped modes (Figure 4(a)). Giden 
and Mahariq [55] proposed a GI PC waveguide designed to achieve wave-
length demultiplexing. In their implementation, rod radii were adiabatically 
varied along the propagation axis, and the system operated in the visible 
regime (584 – 539 nm), using side drop channels to extract localized modes 
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Figure 4. Photonic crystal rainbow trapping platforms utilizing dispersion-engineered structures. 
(a) Tapered electro-optic photonic crystal (PC) waveguide with voltage-controlled trapping. The 
top schematic shows a silicon–polymer hybrid waveguide with a gradually tapered PC region, 
modulated by applied voltages U = 0, 55 V, and 177 V. The right plot displays simulated spatial 
trapping positions at these voltages for an incident wavelength of 1.53 m, with the corresponding 
electric field |E| distributions enabling electro-optic control of PCRT (bottom) [54]. (b) Chirped 3D 
woodpile PC for broadband rainbow trapping. The schematic illustrates a gradual variation in the 
layer-to-layer spacing along the z–axis, resulting in an adiabatically modulated photonic bandgap 
(left panels). Each frequency component is spatially trapped according to its position-dependent 
band alignment. The right panels show time-evolved field profiles of a Gaussian pulse and steady-
state field distributions for three normalized frequencies (a/𝝀 = 0.450, 0.468 and 0.496)  [56]. 
(c) Chirped semi-bilayer PC structure supporting ultra-high-Q Fano resonances. Transmission 
spectra and field distributions for multiple resonant modes demonstrate spatial separation and 
spectral selectivity, with Q-factors reaching up to 8.76 × 107 [58]. (d) Topological PC rainbow 
nanolaser. The top panel shows simulated electric field |E| distributions for three lasing modes at 
1550 nm, 1570 nm, and 1590 nm, each confined in a distinct topological cavity. The middle im-
age is an SEM micrograph of the fabricated 1D topological laser, composed of alternating trivial 
(blue) and nontrivial (orange) photonic segments. The bottom schematic illustrates a variation 
in the lattice period a and height (H), inducing spatial dispersion gradient. This design enables 
wavelength-scale lasing with topological protection in the telecom band [73]. 

with high spectral resolution. The device achieved a compact footprint of 
4.2 m × 2.8 m and crosstalk as low as –30.6 dB, confirming its suitability 
for dense photonic integration. Similarly, Neşeli, Bor, et al. [57] developed a 
tapered 2D PC waveguide with integrated drop channels for wavelength di-
vision multiplexing. Four distinct wavelengths were extracted with coupling 
efficiencies of 75–80%, and experimental results matched simulations within 
1% error. These findings confirm the effectiveness of localized mode-gap 
engineering for compact and reliable wavelength separation.
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Chirped 3D PCs were demonstrated by Hayran, Kurt, et al. [56] using a 
woodpile structure with progressive interlayer spacing variation to enable 
spatial light confinement. This design produced a smooth transition in the 
local photonic bandgap, leading to the reflection and trapping of different 
wavelengths at specific spatial locations. The structure exhibited over two 
orders of magnitude in field enhancement and strong confinement in a defect-
free bulk, validated both numerically and experimentally in the microwave 
regime (Figure 4(b)). Lastly, Soliman, Abood, et al. [58] developed a semi-
bilayer PC structure that combines stacked lattices by engineering a chirped 
PC within the PCW to enable robust, multi-mode PCRT (Figure 4(c)). Their 
design spatially resolved three distinct resonant modes along the propagation 
axis, each supported by a separate Q-enhanced Fano state, allowing for simul-
taneous multiwavelength confinement with strong immunity to structural 
defects. This configuration is well-suited for compact and tunable photonic 
demultiplexers.

A key distinction between conventional and topological rainbow trapping 
lies in the spectral origin and spatial evolution of the supported modes. In 
conventional systems, spatial gradients adiabatically reshape the local band 
structure, gradually shifting guided modes derived from bulk bands into the 
bandgap. As the group velocity vg  decreases continuously along the propaga-
tion axis, different frequencies become localized at different positions (e.g. 
where vg → 0). The trapped field at each point thus remains part of an 
adiabatically evolved bulk mode. This process yields a smooth, continuous 
dispersion landscape and enables classical rainbow trapping via continuous 
frequency – position mapping.

In contrast, topological systems support discrete topologically protected 
states that emerge abruptly due to band inversion or symmetry-breaking tran-
sitions between adjacent regions with distinct topological invariants (e.g. Zak 
phases, Chern numbers) [118,132–136]. These states do not evolve from bulk 
modes; rather, they appear at domain walls. Their dispersion curves are con-
fined to the bandgap and spectrally isolated from the bulk bands. Rainbow 
trapping in such systems is achieved not by forming new modes through gra-
dients, but by modulating the dispersion of pre-existing edge states, shifting 
their group velocity and spatial localization via an applied gradient. This en-
ables frequency separation through discrete mode redistribution, rather than 
the adiabatic evolution of bulk-guided modes. This behavior is well captured 
by the topological Hamiltonian formalism [137–139], commonly written as:

H (k) = dx (k) 𝜎x + dy (k) 𝜎y + dz (k) 𝜎z ,

H (k) is the Bloch Hamiltonian as a function of wavevector k. dx (k), dy (k), 
and dz (k) are momentum-dependent coefficients, and 𝜎x, 𝜎y , and 𝜎zare 
Pauli matrices representing pseudospin degrees of freedom. A topological 
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transition occurs when dz (k) changes sign across a domain wall signal-
ing a change in the system’s topological invariant. This inversion opens a 
bulk gap and guarantees the emergence of localized edge modes at the 
interface due to the bulk – boundary correspondence. Although the disper-
sion relation 𝜔 (k) remains mathematically continuous, the transition from 
extended bulk states to spatially confined edge modes is abrupt. This spec-
tral reorganization, while continuous in energy-momentum space, appears 
discontinuous in real space.

Recently, Tian, Wang, et al. [73] demonstrated an ultra-compact topo-
logical PC rainbow nanolaser operating at the telecom wavelength of 
1550 nm (Figure 4(d)). By engineering Zak phases and gradually varying unit 
cell dimensions, they achieved 64 spatially separated lasing peaks within a 
0.002 mm footprint, with mode volumes as small as ∼0.7 (𝜆/n) and spectral 
tuning spanning over 70 nm. The topological rainbow trapping mechanism 
enables robust, defect-tolerant light confinement within nanoscale cavities, 
making this architecture well-suited for high-density photonic chips and 
wavelength-scalable light sources in optical communication systems. In sum-
mary, PCRT designs have evolved from passive gradient-based structures to 
actively tunable and topologically robust platforms supporting functions such 
as demultiplexing and nanolasing. Despite these advancements, most devices 
still operate within narrow spectral bands, particularly in 3D or topological 
systems, and remain limited by fabrication and material challenges. Addi-
tionally, tight tolerances in semi-bilayer and chirped 3D architectures hinder 
repeatability and large-scale integration.

5. Acoustic rainbow trapping

Acoustic Rainbow Trapping (ART) refers to the selective confinement of 
sound waves by frequency at distinct spatial positions within engineered 
structures [66,90]. This phenomenon offers wide applicability in sound ma-
nipulation such as acoustic filtering, energy concentration, ultrasound imag-
ing, and noise mitigation. For example, Zhu, Chen, et al. [60] numerically 
and experimentally demonstrated ART in a brass-based metamaterial com-
posed of 80 subwavelength grooves with linearly varying depths (Figure 5(a)). 
Frequencies between 5 and 9 kHz were spatially trapped, with simulation 
and experiment confirming position-dependent localization and broadband 
spectral resolution. Similarly, Ni, Wu, et al. [89] and Lee, Jang, et al. [61] 
utilized coiled acoustic metamaterials to achieve compact multiband ART. 
The latter designed a coiled meta-silencer combining acoustic black hole 
(ABH) effects and rainbow trapping. Their structure, which includes a horn-
like neck and a cavity, achieved a sound transmission loss spectrum across 
200 – 1800 Hz. Six resonance peaks (M1 toM6) are identified. Corresponding 
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Figure 5. Acoustic rainbow trapping platforms utilize graded impedance, coiled geometries, and 
topological configurations. (a) Broadband rainbow trapping is achieved through groove depth 
grading in a brass-based metamaterial. The top panel shows calculated intensity profiles for dis-
crete acoustic frequencies (5, 7, and 9 kHz), each trapped at a distinct location along the x–axis. 
The bottom panel displays simulated energy distributions in a structure composed of 80 sub-
wavelength grooves with gradually varying depths, confirming broadband rainbow trapping [60]. 
(b) Compact coiled multi-slit acoustic black hole (ABH) structure exhibiting acoustic rainbow 
trapping. The left schematic depicts vertically arranged slits with gradually increasing lengths l, 
forming coiled ABH units. The right panel shows calculated, simulated, and experimental sound 
transmission loss spectra over 200–1800 Hz, identifying six resonance peaks (M1 to M6). Cor-
responding pressure field maps illustrate efficient spatial localization of each resonant mode 
at 268, 712, 1148, 1468, 1660, and 1760 Hz [61]. (c) Gradient-index superlattices (GISLs) sys-
tem enabling fluid-based rainbow trapping. The structure consists of stacked solid–fluid layers 
with progressively varying fluid thickness. Absolute acoustic pressure distributions reveal distinct 
spatial confinement of frequencies 270 – 300 kHz range, demonstrating broadband localiza-
tion in a water-immersed configuration [62]. (d) Multidimensional topological acoustic rainbow 
trapping based on second-order topological sonic crystals. The top schematic shows a square lat-
tice of elliptical cylinders with a gradient in short axis length, inducing edge states. Simulated 
acoustic pressure field distributions reveal distinct spatial confinement at different frequencies 
(9970, 10080, 10190, 10280, 10370 Hz),  illustrating robust, defect-immune, multidimensional 
rainbow trapping [74]. 

pressure field maps validate efficient spatial trapping of each resonant mode 
for 268, 712, 1148, 1468, 1660 , and 1760 Hz as shown in Figure 5(b). This 
work emphasizes the advantage of compact broadband noise attenuation and 
efficient low-frequency sound absorption.

Zhao and Zhou proposed using microstructure metamaterials to achieve 
compact ART [64]. This vast technique includes creating miniaturized acous-
tic devices for portable sensors and medical diagnostics. In fluid media, Xu, 
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Wu, et al. [62] introduced a gradient-index superlattice (GISL) composed of 
cascaded solid – fluid periodic layers to trap underwater acoustic waves. Their 
GISL broadened Bragg bandgaps and exhibited clear rainbow trapping in the 
270 – 300 kHz  range. Transmission spectra and finite element simulations 
using Gaussian beams showed high field localization and frequency sepa-
ration, proving its potential for underwater sonar and sensing applications 
(Figure 5(c)). The concept has also been extended to topological acoustics, 
such as topological phononic crystals, which exhibit robust, defect-immune 
edge states that can guide sound waves along specific paths [140–143]. 
Chen, Yang, et al. [74] demonstrated a second-order topological sonic crys-
tal structure capable of multidimensional rainbow trapping (Figure 5(d)). By 
gradually varying the short axis of elliptical scatterers in a square lattice, they 
achieved the spatial localization of both edge and corner states at distinct fre-
quencies. Simulations revealed that topologically protected states are trapped 
without spectral overlap, highlighting robustness against defects. ART has 
progressed from early gradient-groove structures toward compact systems for 
targeted functions such as noise reduction, ultrasound imaging, and under-
water acoustic sensing. The topological concentrators have the potential to be 
applied in high-precision acoustic sensing, energy harvesting. These devel-
opments reflect a shift toward miniaturized, broadband, and robust acoustic 
devices, though challenges remain in achieving real-time frequency control 
and broad operational tunability.

6. Elastic rainbow trapping

Elastic rainbow trapping (ERT) leverages spatial grading of mechanical prop-
erties to localize vibrational energy at frequency-dependent positions within 
a structure. ERT offers significant potential for applications such as energy 
harvesting, vibration control, and wave-based sensing. Graded resonator ar-
rays are a common strategy to implement ERT. Arreola-Lucas, B ́aez, et al. 
[92] and De Ponti, Iorio, et al. [67] highlighted the role of graded arrays, 
such as notches in metallic beams or resonators, by altering the heights to 
reduce the wave group velocity. The latter demonstrated ERT using graded 
meta-waveguides, where the heights of resonators are progressively altered 
along the length of a beam. This structural gradient slows down incoming 
waves and traps them at spatial locations corresponding to their frequency. 
Experimental and numerical analyses showed that rainbow reflection and 
trapping occur due to either band-edge zero-group velocity or mode-locking. 
For instance, flexural waves are trapped depending on symmetry, with rain-
bow reflection leading to wave return and rainbow trapping enabling deep 
energy confinement, which is valuable for localized harvesting and mode con-
version (Figure 6(a)). Meanwhile, Wang, Huang, et al. [68] investigated the 
integration of piezoelectric patches in a perforated metamaterial beam, where 
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Figure 6. Elastic rainbow trapping platforms for vibration control, energy harvesting, and wave 
manipulation using graded resonant structures. (a) a graded array of asymmetric resonators with 
linearly increasing lengths (top panel). The bottom panels display space-time waterfall plots of 
vertical displacement (flexural) and the rotation (torsional) for increasing numbers of resonator 
pairs: (I) 9, (II) 25, and (III) 50. By increasing the number of graded resonators, i.e. from left to right, 
it is possible to move from locking to genuine rainbow trapping [67]. (b) The output power mea-
surements from four pairs of piezoelectric patches correspond to distinct trapping frequencies: 
27.7, 36.6, 44.8, and 53.4 kHz. Each subplot includes the spatial displacement field distribution 
in the metamaterial beam, demonstrating localized energy concentration at resonance positions 
[68]. (c) Elastic plate loaded by a fluid and augmented with a periodic array of graded mass–spring 
resonators (top). Time-harmonic pressure field snapshots (bottom) show the conversion of sub-
sonic to supersonic waves and spatial separation of frequencies along the surface of the plate due 
to the graded configuration, enabling frequency-selective trapping [69]. (d) Schematics of the fab-
ricated meta-device with piezoelectric patches at corner sites C1 – C6 for energy harvesting (top). 
The conceptual diagram (bottom) illustrates how rainbow-localized mechanical deformations are 
converted into electrical energy through embedded piezoelectric elements. Multiple vibration 
modes are simultaneously trapped and harvested [75]. 
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the local modification of wave dispersion enables multiple frequency energy 
harvesting by placing piezoelectric patches where wave localization arises, 
allowing for efficient mechanical-to-electrical-energy-conversion. Optimal 
harvesting performance was achieved in the 27–54 kHz range, with electrical 
output significantly enhanced when the resonance and trapping points coin-
cide. These outcomes were supported by simulation and circuit-based output 
modeling (Figure 6(b)).

Furthermore, Alshaqaq, Sugino, et al. [71] demonstrated progress in form-
ing tunable ERT by programmable metamaterials by adapting the inductive 
shunt frequencies in the piezoelectric array. This configuration enables real-
time tuning of group velocity gradients, offering adaptive control over both 
energy localization and dispersion characteristics. In contrast, Chaplain, Pa-
jer, et al. [93] analytically investigated the distinction between rainbow reflec-
tion and rainbow trapping in mass-loaded plates, offering theoretical clarity 
on how symmetry-breaking and modal coupling influence wave behavior. Fi-
nally, Skelton, Craster, et al. [69] created a multi-metawedge consisting of 
graded arrays on fluid-loaded elastic plates. This structure couples surface 
flexural waves with bulk acoustic waves, leading to mode conversion and 
rainbow trapping in underwater contexts. The system thus operates under 
elastic wave dynamics with additional acoustic coupling. The time-harmonic 
snapshot of pressure field plots reveals subsonic-to-supersonic wave conver-
sion and frequency-selective trapping along the plate’s surface due to graded 
geometry (Figure 6(c)). Topological ERT integrates structural grading with 
topologically protected states to achieve frequency-dependent wave localiza-
tion, providing a robust energy confinement and manipulation mechanism 
[95,144]. Chen, Fan, et al. [75] proposed a high-order topological insula-
tor structure using second-order phononic crystals that support multiple 
discrete states, enabling spatially selective confinement. Elastic vibrations 
propagate through the system coupled to edge-guided topological channels, 
which then trap energy at different engineered corner sites. The experimental 
setup showed robust energy trapping, enabling simultaneous multi-frequency 
energy harvesting using piezoelectric elements (Figure 6(d)). These investi-
gations highlight the versatility of topological ERT for controlling mechanical 
waves and its potential to transform fields as energy harvesting and advanced 
waveguide design. ERT has evolved from static graded resonator arrays to 
multifunctional and topologically enhanced systems for precise vibrational 
energy localization. Key advances include the integration of piezoelectric 
harvesting, real-time tunable shunted metamaterials, and higher-order topo-
logical insulators for multi-frequency, defect-immune trapping. These studies 
collectively demonstrate the modulation of group velocity through structural 
gradients, enabling wave control for applications in energy conversion, vibra-
tion filtering, and intelligent mechanical systems, though challenges remain 
in broadband operation and fabrication scalability.
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7. Addressing loss in real-world systems

In practical implementations of rainbow trapping, energy dissipation arising 
from intrinsic material absorption, scattering due to imperfections, and ra-
diative leakage poses a major obstacle to confinement efficiency and overall 
device performance [3,126–128]. These effects are captured through a com-
plex refractive index n = n′ + n″, where the imaginary part n″ signifies 
attenuation. In such media, the electric field propagation along a lossy waveg-
uide follows [79,98]: E (z) = E0.e–𝛼z .eikz  with 𝛼 is proportional to n″. Higher 
n″values correspond to stronger attenuation, reducing the effective propaga-
tion length and trapping duration of localized modes. In topological rainbow 
trapping, while edge states are inherently robust to backscattering and cer-
tain forms of disorder, this immunity is not absolute. Excessive attenuation 
can shorten edge-state lifetimes, reduce propagation lengths, and in extreme 
cases collapse the bulk bandgap, effectively erasing topological protection. 
Moreover, thermal accumulation from absorption may even cause structural 
deformation or phase disruption.

To mitigate such effects, various complementary strategies have been de-
veloped. Material engineering focuses on low-loss platforms and engineered 
dielectrics with minimized absorption in the operational bandwidth [46,145]. 
In parallel, structural optimizations such as anti-reflection coatings, high-Q
cavities, and impedance-matched interfaces help suppress scattering and ra-
diative leakage. Systems with enlarged topological bandgaps further improve 
robustness by energetically isolating edge modes from bulk continuum states, 
thereby preserving topological characteristics even in dissipative conditions 
[135,146]. Another effective approach involves gain-assisted compensation. 
By redefining the refractive index as n = n′ + i (n″ – g), where g  is a spatially 
engineered gain coefficient, dissipation can be selectively neutralized. Care-
ful gain profiling allows tailored compensation that suppresses absorption 
without disturbing dispersion relations or topological invariants [147–149]. 
Beyond direct compensation, recent demonstrations of ultralow-loss perfor-
mance via high-Q cavities and loss-engineered PCs show that device behavior 
can be significantly enhanced by optimizing the balance between confine-
ment and dissipation [150–152]. In this context, non-Hermitian photonic 
design allows selective control over modal lifetimes and spectral features, sup-
porting phenomena such as exceptional points and pseudo-Hermitian phase 
transitions [153,154]. Hybrid integration with low-loss platforms, including 
dielectric waveguides and fiber-coupled interfaces, offers another route to 
reduce propagation losses while maintaining functional confinement. These 
co-designed systems combine the strong localization capabilities of PCs with 
efficient transmission media to enable practical, broadband energy trapping 
[155–157].
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Notably, alternative frameworks have demonstrated intrinsic resilience 
to loss without relying on complex structural gradients or compensation 
schemes. One such example involves the use of complex-frequency modes 
in uniform plasmonic heterostructures [5]. These modes, excited by time-
dependent sources, exhibit weak leakage at their zero-point, thus supporting 
dispersionless light trapping without requiring a prism or extended propaga-
tion distance. Their evanescent spatial character minimizes interaction with 
surface roughness, particularly under grazing incidence, since energy is con-
centrated in the core of the mode, away from perturbations. This leads to 
enhanced tolerance against fabrication imperfections and opens new avenues 
for high-performance, broadband light confinement. Altogether, these ap-
proaches, spanning material innovations, topological bandgap engineering, 
gain profiling, non-Hermitian control, and hybrid integration, collectively 
converge to address the central challenge of loss in rainbow trapping systems. 
As these technologies mature, the prospect of realizing near-lossless, topo-
logically robust, and highly confined wave localization becomes increasingly 
tangible, heralding transformative advances across photonics, acoustics, and 
elastic media.

8. Applications

Rainbow trapping enables precise spatial separation of wave components 
by frequency, unlocking diverse applications across diverse physical plat-
forms. Engineering spatial dispersion profiles enables precise control for 
selective slowing, trapping, and release of waves, offering new functionalities 
in optical communication, ultrafast dynamic routing, and broadband energy 
harvesting.

8.1. Optical communication and wavelength division multiplexing

In optical communication, rainbow trapping provides a robust platform for 
wavelength separation and demultiplexing. By employing chirped PCs or GI 
structures, distinct spectral components are localized at different spatial po-
sitions, effectively reducing crosstalk and enhancing channel isolation. This 
enables high-fidelity operation in wavelength division multiplexing (WDM) 
systems where multiple data streams are transmitted through a single optical 
path. Localized bandgap formation in tapered PC waveguides allows spe-
cific wavelengths to be confined and extracted via integrated drop-channels 
with optimized coupling. As demonstrated in [57], tuning the dielectric rod 
positions in a tapered PCW can maximize the efficiency of wavelength drop-
channels, achieving high transmission and low interference. Such devices are 
ideally suited for dense, high-speed optical networks (Figure 7(a)).
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8.2. Ultrafast light buffering

Rainbow trapping also supports optical buffering through the engineered 
control of group velocity. Slow-light regions, where the group velocity ap-
proaches zero, can temporally delay optical pulses without distortion, func-
tioning as passive delay lines [10,20]. When integrated with topological 
photonic structures, these buffers gain robustness to fabrication defects and 
backscattering, essential for fault-tolerant signal delay. Recent developments 
[158] demonstrate a compact, multistage delay line using topological de-
tours, where delay increases linearly with detour number. This architecture 
supports broadband delays while preserving edge-state integrity, advancing 
optical memory and data synchronization technologies (Figure 7(b)).

8.3. Dynamic frequency routing

The growing demand for high-speed optical interconnects necessitates scal-
able solutions for routing different frequencies [159–162]. Rainbow trapping 

Figure 7. (a) Experimental setup and performance of a wavelength division multiplexing (WDM) 
photonic crystal (PC) system using rainbow trapping. The setup includes a transmitter and re-
ceiver antenna connected to a vector network analyzer (VNA), interfacing with a graded PC 
structure. The right panel shows the physical device and indicates the positions of the four drop-
channels (ch1 – ch4). The center panel presents the normalized transmission spectra for each 
channel, demonstrating wavelength-selective extraction at 13.47 GHz, 13.98 GHz, 14.58 GHz,
and 15.22 GHz  [57]. (b) Compact topological delay line based on engineered phase-delay detours 
(PDDs). The left schematic illustrates how input acoustic pulses are routed through delay lines 
with increasing detour length, generating progressive time delays t, t +𝜏, t + 2𝜏, t + N𝜏. The cen-
tral panel shows the physical sample with one detour (lengths 8a and 10a), where a is the lattice 
constant. The right panel displays the corresponding time–resolved pressure field measurements, 
revealing temporal delays of 2.10 ms and 4.18 ms for red and blue pulses, respectively, confirming 
scalable broadband acoustic delay [158]. 
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enables frequency-selective routing by spatially modulating dispersion to 
steer specific wavelengths through predetermined paths. Topological pho-
tonic crystal waveguides (PCWs) support reconfigurable routing by mod-
ulating edge-state dispersion. In [88], a chirped topological PCW enabled 
real-time redirection of different frequencies via controllable sharp bends, 
preserving topological protection while dynamically rerouting signals, en-
abling broadband, adaptive routing in on-chip systems.

8.4. Highly efficient energy harvesting

Rainbow trapping extends to acoustics and elasticity, enabling broadband 
energy harvesting from ambient vibrations [93,94,163–165]. In such sys-
tems, graded elastic or acoustic metamaterials concentrate vibrational energy 
at specific locations. Piezoelectric elements placed at these trapping points 
convert mechanical energy into electricity over a broad frequency range 
[72,166,167]. The conversion efficiency is given by 𝜂 = Pout/P × 100, where 
Pout  is the electrical output, and P is the acoustic input. By designing phononic 
crystals with dispersion gradients tuned to ambient vibration spectra, broad-
band acoustic energy harvesters can power sensors and embedded devices. 
Potential applications include powering low-energy devices via environmen-
tal vibrations, such as from pedestrian movement, traffic, or ocean waves. This 
offers a sustainable and distributed energy solution for smart infrastructure, 
autonomous sensors, and micro-power electronics.

Altogether, the spatial and spectral selectivity offered by rainbow trap-
ping unlocks disruptive capabilities across domains, whether routing light 
on-chip, buffering ultrafast signals, or harvesting vibrational energy in noisy 
environments. These advances position rainbow trapping as a cornerstone for 
next-generation wave-based technologies.

9. Conclusion

Rainbow trapping has emerged as a powerful wave manipulation strategy, 
enabling frequency-selective confinement and spatial separation across di-
verse physical platforms. By tailoring the local dispersion relation through 
spatial gradients, it enables adiabatic slowing of wave packets and the local-
ization of distinct spectral components at designated positions. This ability 
has unlocked a wide range of practical applications from optical multiplex-
ing and buffering to energy harvesting and signal routing. Recent advances 
in topological rainbow trapping have addressed key limitations in conven-
tional designs, particularly their susceptibility to backscattering, fabrication 
imperfections, and disorder. By leveraging topologically protected edge and 
corner states, these systems enable robust localization and transport immune 
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to structural perturbation, an essential requirement for scalable, fault-tolerant 
technologies.

Despite the growing maturity of the field, challenges remain. Current im-
plementations typically operate within limited spectral windows, constrained 
by material losses or narrow design bandwidths. Moving forward, expanded 
spectral coverage will depend on engineering wideband dispersion profiles 
through optimized structural geometries or novel materials. In parallel, in-
tegrating rainbow trapping with nonlinear optics, quantum photonics, or 
plasmonic nanostructures promise enhanced functionality. Nonlinear inter-
actions could enable dynamic frequency control, while quantum topological 
states offer robust pathways for entanglement-preserving operations. Plas-
monic topological platforms may further shrink device footprints while 
retaining high confinement.

Looking ahead, emerging approaches based on moiré-engineered flat 
bands provide new opportunities for extreme light confinement and novel 
slow-light phenomena, offering a compelling direction for future rainbow 
trapping implementations. Recent breakthroughs in magic-angle nanostruc-
tures have demonstrated stopped-light nanolasing, subwavelength mode 
volumes, and reconfigurable coherent emission arrays through interlayer-
twisted photonic graphene lattices [168–171]. These systems achieve flat-
band-induced localization via engineered mode coupling without requiring 
conventional bandgaps. To realize rainbow trapping in such platforms, spatial 
variation of the twist angle, interlayer coupling (e.g. via vertical separation or 
refractive index contrast), or unit cell registry can be used to introduce gradi-
ents in the flat-band condition. These variations enable frequency-dependent 
localization across the structure, forming a moiré-engineered analog to tra-
ditional graded-index or chirped periodic systems. This pathway opens up 
novel strategies for dispersion engineering and spectral separation in next-
generation nanophotonic devices.

In summary, rainbow trapping, both conventional and topological, con-
tinues to evolve as a foundational tool for advanced wave control. With 
its deep physical roots in dispersion engineering and its rapidly expand-
ing technological impact, it holds strong promises for driving innovation 
in communication, energy, and sensing systems. Ongoing progress in loss 
mitigation, topological robustness, and broadband design will be pivotal 
in transitioning rainbow trapping from laboratory prototypes to real-world 
applications.
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