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Unidirectional propagation based on surface magnetoplasmons (SMPs) has recently been realized at the
interface of magnetized semiconductors. However, usually SMPs lose their unidirectionality due to nonlocal
effects, especially in the lower trivial band gap of such structures. More recently, a truly unidirectional SMP
(USMP) has been demonstrated in the upper topological nontrivial band gap, but it supports only a single USMP,
limiting its functionality. In this work, we present a fundamental physical model for multiple, robust, truly
topological USMP modes at terahertz (THz) frequencies, realized in a semiconductor-dielectric-semiconductor
(SDS) slab waveguide under opposing external magnetic fields. We analytically derive the dispersion properties
of the SMPs and perform numerical analysis in both local and nonlocal models. Our results show that the
SDS waveguide supports two truly (even and odd) USMP modes in the upper topological nontrivial band
gap. Exploiting these two modes, we demonstrate unidirectional SMP multimode interference (USMMI), being
highly robust and immune to backscattering, overcoming the back-reflection issue in conventional bidirectional
waveguides. To demonstrate the usefulness of this approach, we numerically realize a frequency and magneti-
cally tunable arbitrary-ratio splitter based on this robust USMMI, enabling multimode conversion. We, further,
identify a unique index-near-zero (INZ) odd USMP mode in the SDS waveguide, distinct from conventional
semiconductor-dielectric-metal waveguides. Leveraging this INZ mode, we achieve phase modulation with a
phase shift from −π to π . Our work expands the manipulation of topological waves and enriches the field of
truly nonreciprocal topological physics for practical device applications.

DOI: 10.1103/35r5-ngx2

I. INTRODUCTION

Topological electromagnetics (EM) [1–4] has gained sig-
nificant attention due to its intriguing physics and potential
applications [5]. One of the most remarkable features is the
existence of unidirectional EM edge modes [6,7] in nontriv-
ial topological band gaps, which can propagate in a single
direction while suppressing backward reflection, even in the
presence of defects [8,9]. These unidirectional edge modes
arise from the breaking of time-reversal symmetry through
an external magnetic field [10,11], and were first proposed
as analogues of quantum Hall edge states [12,13] in photonic
crystals (PhCs) [14]. Such PhCs-based unidirectional modes
have been demonstrated both theoretically [15–17] and exper-
imentally [18–23] at microwave frequencies.

As an alternative, surface magnetoplasmons (SMPs) have
been proposed for unidirectional propagation due to their
simple and robust structure [24–29]. Recently, we have re-
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alized unidirectional SMPs (USMPs) using gyromagnetic
and gyroelectric materials [30–34]. In the terahertz (THz)
regime, two types of USMP have been identified [35,36].
The first type, nontopological USMP, exists in the lower triv-
ial band gap of a magnetized semiconductor and transparent
dielectric (εr > 0) waveguide [34,37–39], maintaining unidi-
rectional characteristics due to nonreciprocal flat asymptotes
[34]. However, these SMPs lose their strict unidirectionality
when nonlocal effects are included [40], as the asymptotes
vanish [41]. The second type, truly topological USMPs, exist
in the upper nontrivial band gap [36,42–45], characterized
by a nonzero gap Chern number (Cgap) [46], at the interface
between magnetized semiconductors and opaque dielectrics
(εr < 0), and are immune to nonlocal effects. These genuinely
topological USMPs were first theoretically proposed and
shown to exhibit robust unidirectionality against nonlocality
[36], and later experimentally demonstrated in a magnetized
InSb-metal waveguide [47]. Further, a low-loss broadband
USMP in the upper band gap was proposed in an InSb-Si-
air-metal waveguide [48], though only one truly USMP mode
is supported in these waveguides.

Moreover, multimode interference (MMI) has been re-
alized by coupling two or more conventional edge modes
[49,50], but these modes are bidirectional and suffer from
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back reflection. To overcome this limitation, PhCs-based
MMI using multiple unidirectional modes has been proposed,
effectively suppressing backscattering [51,52]. More recently,
unidirectional MMI has been experimentally demonstrated
in a PhCs waveguide under two external magnetic fields at
microwave frequencies [53]. Using USMP, microwave MMI
and mode conversion is achieved by applying opposing mag-
netic fields [54]. However, unidirectional MMI and mode
conversion based on USMPs has not been reported at THz
frequencies.

In this work, we present a fundamental physical model
for multiple truly USMP modes at THz frequencies, dif-
fering from previously proposed waveguides that support
only one true USMP mode [36,47,48]. The model involves
a semiconductor-dielectric-semiconductor (SDS) waveguide
under opposing magnetic fields. We analytically derive and
numerically analyze the dispersion in both local and non-
local models, demonstrating that this waveguide supports
two truly even and odd USMP modes in the upper topo-
logical bulk mode band gap while these modes lose their
unidirectionality in the lower bulk mode band gap due to
nonlocal effects. Using these two modes, we realize unidirec-
tional SMP multimode interference (USMMI), which exhibits
strong robustness against defects and eliminates backscat-
tering, effectively overcoming the backscattering problem in
conventional bidirectional waveguides; similarly to the PhCs-
based MMI at microwave frequencies [53]. Additionally, we
demonstrate a frequency and magnetically tunable arbitrary-
ratio power splitter based on this robust USMMI, along with
mode conversion capabilities. Notably, we report a unique
index-near-zero (INZ) odd USMP mode in our waveguide,
contrasting with conventional semiconductor-dielectric-metal
waveguides that do not support the INZ mode [34]. This dis-
covery enables efficient phase modulation with a phase shift
of 2π .

II. THEORETICAL PHYSICAL MODEL

The basic physical model of multiple truly THz USMP
modes in the SDS waveguide is illustrated in Fig. 1. In this
part, we theoretically derive the dispersion equations for the
SMP supported by the SDS structure in both local and nonlo-
cal models.

A. Dispersion of SMP in the local model

First, we derive the dispersion equation of SMP in the
local model. In our SDS system, the dielectric constant
and thickness of the dielectric layer are εr and 2d , respec-
tively. To break the time-reversal symmetry of the system,
opposing external magnetic fields (B1 and B2) are imposed
on the semiconductors in the z direction. Consequently, the
semiconductors exhibit gyroelectric anisotropy, with two cor-
responding relative permittivity tensors [34,37]

εs1 =
⎡⎣ ε11 iε21 0

−iε21 ε11 0
0 0 ε3

⎤⎦, εs2 =
⎡⎣ ε12 −iε22 0

iε22 ε12 0
0 0 ε3

⎤⎦ (1)

with ε1 j = ε∞(1 − ωω2
p

ω[ω2−ω2
c j

]
), ε2 j = ε∞

ωc j ω
2
p

ω(ω2−ω2
c j

)
( j = 1, 2),

and ε3 = ε∞(1 − ω2
p

ω2 ), where ω = ω + iν, ν is the electron
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FIG. 1. Dispersion relation of SMP in the lower bulk mode band
gap for the local [(a) and (c)] and nonlocal [(b) and (d)] model.
(a) and (b) show the symmetric waveguide for ωc1 = ωc2 = 0.25ωp,
while (c) and (d) show the asymmetric waveguide for ωc1 = 0.15ωp

and ωc2 = 0.25ωp. The solid red and dashed blue lines show the
odd and even SMP modes. The inset shows the schematic of
the SDS waveguide. ωc1 = 0.15ωp and ωc2 = 0.25ωp, correspond
to the external magnetic fields B1 = 0.15 T and B2 = 0.25 T, re-
spectively. The nonlocal parameter is β = 1.07 × 106 m/s, and
the other parameters are ε∞ = 15.7, εr = 11.68, d = 0.04λp, and
ωp = 4π × 1012 rad/s.

scattering frequency, ωc j = eBj/m∗ (where e and m∗ are re-
spectively the charge and effective mass of the electron) is the
electron cyclotron frequency, ωp is the plasma frequency, and
ε∞ is the high-frequency relative permittivity. Note that with-
out an external magnetic field, it is a conventional isotropic
material (ε2 j = 0 and ε1 j = ε3). In the magnetized semicon-
ductor, the bulk modes have a dispersion relation of

k = √
εv j k0 (2)

for transverse-magnetic (TM) polarization, where k is the
propagation constant, k0 = ω/c is the vacuum wave number,
and εv j = ε1 j − ε2 j /ε

2
1 j

is the Voigt permittivity. It has two
band gaps with εv j < 0. The upper boundaries of the lower

and upper band gaps are ωa j =
√

ω2
c j
/4 + ω2

p − ωc j /2 and

ωb j =
√

ω2
c j
/4 + ω2

p + ωc j /2 by k = 0 into Eq. (2). The lower

boundary of the upper band gaps are ωr j =
√

ω2
c j

+ ω2
p by

k → ±∞ into Eq. (2). The waveguide supports TM polar-
ized SMP. Solving Maxwell’s equations with four continuous
boundary conditions, the dispersion relation of SMP in the
local model can be derived as (for details see Appendix A)

e4αd d =
2∏

j=1

Mj (3)

with

Mj = ε1 j αdεv j − εr (ε1 j α j − kε2 j )

ε1 j αdεv j + εr (ε1 j α j − kε2 j )
,
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where αd =
√

k2 − εrk2
0 , α j =

√
k2 − εv j k

2
0 . By sub-

stituting k → ±∞ into Eq. (3), the forward (+) and
backward (−) asymptotic frequencies are obtained
as ω±

sp1 = 1
2 (

√
ω2

c1
+ 4ω2

p
ε∞

ε∞+εr
∓ ωc1 ) and ω±

sp2 =
1
2 (

√
ω2

c2
+ 4ω2

p
ε∞

ε∞+εr
∓ ωc2 )

Consider a special symmetric case of B1 = B2 (corre-
sponding to ωc1 = ωc2 ), we have ε11 = ε12 = ε1, ε21 = ε22 =
ε2, εv1 = εv2 = εv and α1 = α2 = α, thus M1 = M2, then
Eq. (3) becomes

α − k
ε2

ε1
+ εv

εr
αd tanh(αdd ) = 0, (4a)

α − k
ε2

ε1
+ εv

εr
αd coth(αdd ) = 0 (4b)

for the even and odd modes, respectively.

B. Dispersion of SMP in the nonlocal model

We further derive the dispersion equation of SMP in the
nonlocal model. The nonlocal response in plasmonic mate-
rials originates from the convective and diffusive motion of
free electrons during an optical cycle. Several nonlocal mod-
els have been proposed, including the hydrodynamic model
[55–57], random phase approximation [58], and a quantum-
corrected model [59]. Among these, the hydrodynamic model
based on free electron gas [60] has been widely applied
in plasmonic materials, such as deep subwavelength metal
[61,62] and doped semiconductors (particularly n-type InSb)
[63]. Here, we investigate the nonlocal effects in the SDS
system using the hydrodynamic model of the free electron
gas, as recently reported in Refs. [36,41]. The response of
the gyroelectric semiconductors to EM field gives rise to

an induced free electron current J [36,40,41], which satis-
fies the hydrodynamic equation β2∇(∇ · J) + ω(ω + iν)J +
iωJ × ωcẑ = iωω2

pε0ε∞E, where β is the nonlocal parame-
ter, and ν is a phenomenological damping rate. Note that
β is proportional to the Fermi velocity νF (β2 = 3ν2

F /5 for
ν = 0), which is inversely proportional to the effective mass
of electrons m∗ [40]. Maxwell’s equations can be expressed as
∇ × H = −iωε0ε∞E + J and ∇ × E = iωμ0H due to nonlo-
cal effects. The dispersion relation of bulk modes can be found
as [36,48]

Qk4 + Djk
2 + Fj = 0, (5)

where Q = β2ωω, Dj = (β2ε∞k2
0 + ωω)(ω2

p − ωω) +
ω2ω2

c j , and Fj = ε∞k2
0 (ωω − ω2

p)2 − ε∞k2
0ω

2ω2
c j . By solving

Eq. (5), we obtain two dispersion relations for the upper
and lower bulk modes: k2

a j = (−Dj +
√

D2
j − 4QFj )/2Q and

k2
b j = (−Dj −

√
D2

j − 4QFj )/2Q, where the lower cutoff
frequencies are identical to ωa j and ωb j in the local model.
Here, ka j and kb j are the propagation constants. In contrast to
the local model, the upper cutoff frequency ωr j does not exist
in the nonlocal model.

Combining hydrodynamic and Maxwell’s equations with
six continuous boundary conditions, the SMP dispersion in
the nonlocal model can be expressed as (for details see
Appendix B)

e4αd d =
2∏

j=1

Nj (6)

with

Nj = ε∞αd/εr (γ js j + ip js′
j ) + k(γ j + ip j ) + (

k2 − k2
0ε∞

)
(s′

j − s j )

ε∞αd/εr (γ js j + ip js′
j ) − k(γ j + ip j ) − (

k2 − k2
0ε∞

)
(s′

j − s j )
,

where γ j =
√

k2 − k2
b j , p j =

√
k2

a j − k2, and

s j = ωωp2
j + iωωc jkp j + ε∞k2

0

[
β2k2 − ωω + ω2

p

]
ωωc j (k2 − ε∞k2

0 ) − i(ωω − ε∞β2k2
0 )kp j

,

s′
j = −ωωγ 2

j − ωωc jkγ j + ε∞k2
0

[
β2k2 − ωω + ω2

p

]
ωωc j

(
k2 − ε∞k2

0

) + (
ωω − ε∞β2k2

0

)
kγ j

.

Consider a special symmetric case, we have s1 = s2 = s, s′
1 = s′

2 = s′, p1 = p2 = p, and γ1 = γ2 = γ ; thus N1 = N2; Eq. (6)
becomes

ε∞αd/εr (γ s + ips′)tanh(αd d ) + (s − s′)(k2 − k2
0ε∞) − k(γ + ip) = 0, (7a)

ε∞αd/εr (γ s + ips′)coth(αd d ) + (s − s′)(k2 − k2
0ε∞) − k(γ + ip) = 0 (7b)

for the even and odd modes, respectively.

III. SIMULATION RESULTS

In this part, we conduct a detailed numerical analysis
of the SMP dispersion based on the derived equations in
the SDS system and demonstrate many degrees of freedom
to manipulate SMP modes, including interference, power,

and phase, by full-wave simulation. Throughout the paper,
the gyroelectric semiconductor is assumed to be n-doped
InSb [36,41] with its typical parameters are ε∞ = 15.7 and
ωp = 4π × 1012 rad/s ( fp = 2 THz). Like in Refs. [36,41],
we take a nonlocal parameter β = 1.07 × 106 m/s for non-
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local hydrodynamic model at room temperature. Note that
β = 0 in the local model. The nongyroelectric dielectric
layer is exemplified by silicon with a relative permittivity
of εr = 11.68.

A. The dispersion in the lower bulk mode band gap

We first analyze the dispersion of SMP within the lower
bulk mode band gap. This band gap ranges from 0 to ωa2 ,

where ωa2 =
√

ω2
c2
/4 + ω2

p − ωc2/2 when ωc2 � ωc1 . The
special case of the symmetric (ωc2 = ωc1 ) waveguide is con-
sidered. Using Eqs. (4) and (7), we numerically calculate
the dispersion relations of SMPs in both local and nonlocal
models, respectively. In the calculation, we ignore the effect
of material loss (i.e., ν = 0) and take d = 0.04λp as an
example. Figure 1(a) shows the dispersion of SMP in the sym-
metric waveguides for ωc1 = ωc2 = 0.25ωp, corresponding to
B1 = B2 = 0.25 T. As expected, the SDS structure supports
two SMP modes: odd mode (solid red line) and even mode
(dashed blue line). These two modes exhibit identical asymp-
totic frequencies (ω−

sp1 = ω−
sp2, ω+

sp1 = ω+
sp2). Moreover, these

two modes propagate backward only within the frequency
range [ω−

sp, ωa2 ], corresponding to [0.6425ωp, 0.8828ωp]; As
a result, a unidirectional propagation range is formed, as seen
in the shaded yellow region in Fig. 1(a). However, when the
nonlocal effects (nonlocal parameter β = 1.07 × 106 m/s)
are taken into account [36,41], the dispersion relations of the
SMP modes differ significantly, as shown in Fig. 1(b). The dis-
persion curves increase with k, and the forward and backward
asymptotic frequencies of both modes vanish at large wave
numbers, leading to the disappearance of the unidirectional
propagation region within the lower bulk mode band gap.

To further investigate the phenomenon of unidirectional
disappearance induced by nonlocal effects, we analyze the
dispersion in the common case of asymmetric waveguide
(ωc2 �= ωc1 ) using Eqs. (3) and (6). As an example, ωc1 =
0.15ωp and ωc2 = 0.25ωp, which correspond to B1 = 0.15 T
and B2 = 0.25 T, and the other parameters are identical to
those of the symmetric waveguide. Figure 1(c) shows the
dispersion curve for the local model. Due to the asymmet-
ric structure, the SMP waveguide also supports even and
odd modes. The asymptotic frequencies for the odd modes
are ω−

sp2 and ω+
sp1, while those for the even modes are ω−

sp1

and ω+
sp2. As seen in the yellow shaded region, a unidirec-

tional window based on horizontal asymptotes clearly occurs
in [ω+

sp1, ωa2 ], corresponding to [0.6859ωp, 0.8828ωp]. For
comparison, the dispersion curve for the nonlocal model is nu-
merically calculated using Eq. (6). Similarly to the symmetric
waveguide, Fig. 1(d) further demonstrates the disappearance
of the asymptotic frequency when considering nonlocal ef-
fects, leading to the absence of the USMP window in the
asymmetric waveguide. Therefore, the results demonstrate
that for both symmetric and asymmetric waveguides, the SMP
modes lose their unidirectionality in the lower bulk mode band
gap when nonlocal effects are considered.

B. The dispersion in the upper bulk mode band gap

We further analyze the dispersion of SMP in the upper
bulk mode band gap [ωr2 , ωb1 ], where ωr2 =

√
ω2

c2
+ ω2

p and

ωb1 =
√

ω2
c1
/4 + ω2

p + ωc1/2, corresponding to the gray re-
gion in Fig. 1. We numerically calculate the dispersion of SMP

in the local model, and the parameters are consistent with
those in Fig. 1. Figure 2(a) shows the dispersion diagram for
the symmetric waveguide with ωc1 = ωc2 = 0.25ωp. As seen
from the lines, this symmetric waveguide supports both odd
(red solid line) and even (blue dashed line) USMP modes in
upper bulk mode band gap [ωr2 , ωb2 ], which corresponds to
[1.0308ωp, 1.1328ωp], marked by the grey shaded area. For
comparison, the dispersion of SMP in the nonlocal model
is also shown as circles in Fig. 2(a). Obviously, the disper-
sion curves for odd and even SMP modes almost completely
coincide for both the local and nonlocal models at small
wavenumbers. This result agrees well with the result that
the effect of nonlocality, proportional to β2k2 in Eq. (6), is
expected to be small [36]. In contrast to USMP in the lower
trivial band gap, which exists at larger wavenumbers, the SMP
modes maintain their unidirectionality for small wavenumbers
in the upper topologically nontrivial band gap, even when
nonlocal effects are considered. These USMP modes exhibit
the nontrivial topological property, which results from the
nonzero gap Chern number Cgap = ±1 for the upper and lower
magnetized InSb [64], as shown in Fig. 2(a). The difference
in the gap Chern number is �Cgap = 1 − (−1) = 2. Thus, ac-
cording to the principle of bulk-edge correspondence [65,66],
the upper band gap supports two unidirectional topological
modes, which is consistent with the odd and even USMP
modes.

Figure 2(b) illustrates the dispersion curves for the asym-
metric waveguide with ωc1 = 0.15ωp and ωc2 = 0.25ωp.
Similar to the symmetric results in Fig. 2(a), the USMP modes
still exist, and the lines and circles almost completely over-
lap. However, the USMP band is compressed to the range
[1.0308ωp, 1.0778ωp], resulting from the asymmetric struc-
ture. Note that our waveguide supports high-order SMP mode
based on the total internal reflection (TIR) mechanism in the
upper band gap, which needs to be suppressed since they are
typically bidirectional. Their dispersion relations in a symmet-
ric waveguide can be obtained by substituting αd = ip into
Eq. (4), where p =

√
εrk2

0 − k2 . To suppress the bidirectional
high-order mode in the upper band gap, the thicknesses of the
dielectric layer is required to satisfy

√
εrk0d � π/2 at k = 0

[48], corresponding to the critical value dc = πc/(2
√

εrωb2 )

with ωb2 =
√

ω2
c2
/4 + ω2

p + ωc2/2. For our symmetric waveg-
uide with ωc1 = ωc2 = 0.25ωp, it is found that dc = 0.064λp.
To verify this, we calculated the dispersion curves for d =
0.064λp, and the results are displayed in Fig. 2(c). As ex-
pected, the lower cutoff frequency of the higher-order mode
is very close to ωb2 at k = 0. In this case, the high-order
mode does not influence the USMP band. Figure 2(d) shows
the dispersion curves for d = 0.09λp. Obviously, for d > dc,
three SMP modes are supported in the upper band gap, and
the USMP band is compressed by the bidirectional higher-
order mode. The result demonstrates that the USMP band is
signicantly affected by d . Therefore the thickness parameter
of the dielectric layer should be set to d � dc.

Next, we will analyze the USMP bandwidth of the asym-
metric waveguide. When ωc2 � ωc1 , the USMP bandwidth
�ω = ωb1 − ωr2 is characterized by

�ω =
√

ω2
c1
/4 + ω2

p + ωc1/2 −
√

ω2
c2

+ ω2
p (8)
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Analytic
FEM

Analytic
FEM

FIG. 2. [(a)–(d)] Dispersion relations of SMPs in the upper bulk mode band gap. [(a), (c), and (d)] The symmetric waveguide for ωc1 =
ωc2 = 0.25ωp, and (b) the asymmetric waveguide for ωc1 = 0.15ωp and ωc2 = 0.25ωp, corresponds to B1 = 0.15 T and B2 = 0.25 T. The
dispersion curves almost perfectly coincide for the local (lines) and nonlocal (circles) models. The blue, red, and green show the even, odd, and
high-order SMP modes, respectively. The shaded yellow areas represent the USMP band. [(a) and (b)] d = 0.04λp, (c) 0.064λp and (d) 0.09λp.
(e) The USMP bandwidth �ω as a function of ωc1 and ωc2 , and the dashed white line corresponds to ωc1 = ωc2 . (f) H -field distributions in
the symmetric and asymmetric waveguide at ω = 1.05 ωp. [(g) and (h)] The analytical (line) and FEM (square) results of beat length Lπ as
a function of frequency ω and external magnetic field B1, respectively. The blue and red represent B1 �= B2 and B1 = B2, respectively. The
dashed black line corresponds to ωb1 = 1.0778ωp. The other parameters are the same as in Fig. 1.

Note that when ωc2 < ωc1 , the roles of ωc1 and ωc2 in the
Eq. (8) will be interchanged. Figure 2(e) illustrates the vari-
ation of bandwidth �ω with respect to ωc1 and ωc2 , which
correspond to related parameters B1 and B2. Due to ωc1 =
eB1/m∗ and ωc2 = eB2/m∗, the unidirectional bandwidth �ω

is magnetically controllable by varying B1 and B2. It is found
that �ω exhibits a local maximum when ωc1 = ωc2 . The white
dashed line indicates the distribution of this local maximum,
which increases with ωc2 .

These results confirm that in the upper band gap, our
waveguide supports two truly USMP modes at THz fre-
quencies. The even and odd USMP modes maintain their
unidirectionality when considering nonlocal effects, which is
different from the situation in the lower band gap. Moreover,
the unidirectional characteristics of the SMP modes are equiv-
alent in both the local and nonlocal models. Therefore we will
take the local model in the subsequent numerical calculations
and simulations as an example, and our interest focuses on the
upper bulk mode band gap.

C. Unidirectional MMI based on two USMP modes

When two USMP modes are excited simultaneously and
interact with each other in the silicon layer, unidirectional
SMP multimode interference (USMMI) emerges. To verify
this phenomenon, we simulate wave transmission in both
symmetric and asymmetric waveguides with the nite element
method (FEM) using COMSOL Multiphysics, as shown in
Fig. 2(f). In the simulation, we position a magnetic cur-
rent point source with a frequency of ω = 1.05ωp to excite
the SMP and take into account the material loss (i.e., ν =

10−6ωp). As expected, USMMI is realized at THz frequen-
cies, and it can only propagate forward, not backward, in both
symmetric and asymmetric waveguides. The H-field distribu-
tion in the symmetric waveguide is identical at both InSb-Si
interfaces, whereas it differs in the asymmetric waveguide due
to structural asymmetry. Moreover, the H fields of USMMI
are periodic with a period of 2Lπ , where the beat length Lπ is
denoted by [51,67]

Lπ = π

keven − kodd
, (9)

where keven (kodd) is the propagation constant of the even (odd)
mode, respectively. To further investigate the characteristics of
USMMI, we analyze the variation of Lπ with frequency and
the external magnetic field. Figure 2(g) shows the analytical
value of Lπ as a function of ω using Eq. (9) in the whole
USMMI range. It is evident that Lπ increases with ω for both
symmetric (B1 = B2 = 0.25 T) and asymmetric (B1 = 0.15 T
and B2 = 0.25 T) waveguides, corresponding to the red and
blue lines, respectively. Figure 2(h) shows Lπ as a function
of B1, where ω is fixed at 1.05ωp as an example. As seen
from the solid red line, the analytical Lπ monotonically de-
creases with B1 varying from 0.15 to 0.25 T, demonstrating the
magnetically controllable properties of USMMI by tuning two
symmetric magnetic fields (B1 = B2). More interestingly, we
achieve magnetically controllable Lπ with a single-sided mag-
netic field, as indicated by the dashed blue line in Fig. 2(h).
Here, B2 is fixed at 0.25 T as an example. Lπ monotonically
decreases with B1. Furthermore, we select multiple frequen-
cies and magnetic fields to calculate the simulated Lπ with
the full-wave FEM, as seen in the squares in Figs. 2(g) and
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FIG. 3. Arbitrary ratio power manipulation by frequency.
(a) Schematic of the H-shaped splitter based on USMMI. (b) Trans-
mission of SMP along channel P1 (η1) and total transmission (η)
in the symmetric and asymmetric splitters. [(c) and (d)] Simu-
lated H-field amplitudes in the symmetric splitter at ω = 1.059ωp

and 1.041ωp (c), and the asymmetric splitter at ω = 1.05ωp and
1.0335ωp (d). The parameters are the same as in Fig. 2.

2(h), respectively. Obviously, the FEM results are in per-
fect agreement with the analytical values. Note that USMMI
persists in the whole range, resulting from the magnetically
controllable USMMI band. This result confirms that USMMI
is controllable by both frequency and the external magnetic
field.

D. Frequency and magnetically tunable arbitrary-ratio
power splitter based on USMMI

By controlling the beat length Lπ of MMI with external
magnetic fields and frequencies, power manipulation has been
achieved in topological PhCs at microwave frequencies [53].
Here, utilizing USMMI, we achieve arbitrary ratio power ma-
nipulation at THz frequencies. To verify this, we propose an
H-shaped splitter, as shown in Fig. 3(a). The middle part is an
SDS waveguide supporting USMMI, while the left and right
parts are InSb-Si-metal waveguides with silicon thickness d
[34], which has the same dispersion equation as given in
Eq. (4a). A source, marked by a star, is placed at the input
channel S2 to excite USMP and USMMI. Consequently, it is
divided into the upper and lower outputs labeled as P1 and P2,
respectively. To illustrate this, we perform full-wave simula-
tions in both symmetric (B1 = B2 = 0.25 T) and asymmetric
(B1 = 0.15 T, B2 = 0.25 T) waveguides, and define the power
ratio of channel P1 (P2) to channel S2 as η1(η2), and the total
transmission as η = η1 + η2.

Figure 3(b) displays the transmission coefficients η1 and
η versus ω for both splitters. η1 oscillates arbitrarily be-
tween 0 and 1 in the unidirectional range from 1.0308ωp

to 1.0778ωp. Owing to the backscattering-immune property
of topologically USMP mode and the absence of reflection
at the corners, η remains close to 1 under low-loss con-
ditions. For the symmetric waveguide, η1 = 0 (η2 = 1) at
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FIG. 4. Arbitrary ratio power manipulation by the external mag-
netic field. (a), (b) Transmission coefficients η1, η2, and η as
functions of magnetic fields B1. (a) B1 = B2, (b) B1 �= B2, and B2

is fixed at 0.25 T. [(c) and (d)] Simulated H-field amplitudes in the
symmetric(a) splitter at B1 = B2 = 0.24 T and B1 = B2 = 0.22 T (c),
and the asymmetric (b) splitter at B1 = 0.232 T and B1 = 0.19 T (d).
The working frequency is fixed at ω = 1.05ωp.

ω = 1.041ωp and η1 = 1 (η2 = 0) at ω = 1.059ωp; whereas
for the asymmetric waveguide, η1 = 0 (η2 = 1) at ω =
1.0335ωp and η1 = 1 (η2 = 0) at ω = 1.05ωp. For clarity,
the H distributions of both waveguides are presented in
Figs. 3(c) and 3(d), respectively. As expected, the power al-
most entirely flows into Channels P1 and P2 at ω = 1.059ωp

and 1.041ωp, and the interference length L satisfies L ≈
10.5Lπ (ω=1.059ωp) ≈ 11.5Lπ (ω=1.041ωp) with an inverted (direct)
image at the corner in the symmetric waveguide. Simi-
larly, the power flow into channel P1 (P2) at ω = 1.05ωp

(1.0335ωp), with L ≈ 8.5Lπ (ω=1.05ωp) ≈ 9.5Lπ (ω=1.0335ωp) in
the asymmetric waveguide. The results demonstrate that a
frequency-tunable arbitrary-ratio power splitter is realized us-
ing USMMI.

Furthermore, the magnetically tunable power splitter based
on USMMI is demonstrated. To verify this, the frequency
is fixed at ω = 1.05ωp. Figure 4(a) shows the η1, η2, and η

versus B1 by tuning two symmetric magnetic fields (B1 = B2).
η1 and η2 vary continuously from 0 to 1 as B1 changes within
the range of [0.15 T, 0.25 T]. As a special case, η1 = 0 and
η2 = 1 at B1 = B2 = 0.22 T, and η1 = 1 and η2 = 0 at B1 =
B2 = 0.24 T. The corresponding full-wave simulation results
are displayed in Fig. 4(c). As expected, the power respectively
flows into channel P1 (P2) at B1 = 0.22 T (0.24 T), and
the values of L satisfy L ≈ 10.5Lπ (B1=0.24T ) ≈ 9.5Lπ (B1=0.22T )

with an inverted (direct) image at the corner. This result
confirms the arbitrary ratio power manipulation by the mag-
netic field. More importantly, we propose a single-sided
magnetic control power splitter, which is much easier to op-
erate than the two-sided control in practical applications. To
demonstrate this, we set a fixed value of B2 = 0.25 T as an
example and resimulate by only adjusting B1. As seen in
Fig. 4(b), the splitter achieves arbitrarily splitting ratios from
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FIG. 5. Comparison of our unidirectional waveguide with con-
ventional waveguide. (a), (b) Simulated H-field amplitudes of the
symmetric waveguide. (a) Robust USMP modes without backscat-
tering. (b) A conventional bidirectional mode with backscattering
from the metallic defect. [(c) and (d)] H-field distributions with
(solid lines) and without (dashed lines) the defects along the upper
InSb-Si interface. The operating frequency is ω = 1.05ωp and other
parameters are the same as in Fig. 3.

0 to 1 as expected. When B1 = 0.232 T and B1 = 0.19 T,
the power is respectively directed to channels P1 and P2, as
shown in Fig. 4(d), demonstrating magnetically controllable
power manipulation with only one magnetic field. Therefore
a USMMI-based power splitter has been demonstrated to
achieve arbitrary ratios of power manipulation by the exter-
nal magnetic field intensity and frequency, resulting from the
frequency and magnetically controllable USMMI.

E. Robust USMMI at THz frequencies

To demonstrate the robustness of the USMMI, we intro-
duce a square metallic defect of 0.04λp × 0.08λp into the
waveguide, as highlighted by the grey part in Fig. 5(a). We
take a symmetric waveguide as an example. Figure 5(a) shows
the simulated H-field amplitudes for ω = 1.05ωp. It can be
seen that the excited USMMI mode can smoothly bypass the
defect and still travel forward without generating a backward
wave from the defect. To clearly illustrate this phenomenon,
the H-field distributions along the upper InSb-Si interface are
displayed for both cases with (dashed line) and without (solid
line) defects in Fig. 5(c). As expected, the fields of USMMI
remain unchanged before the defect and quickly recover the
same amplitude after it. These results confirm the strong ro-
bustness of USMMI.

For comparison, we remove the external magnetic field
from the waveguide in Fig. 5(a), effectively making it a con-
ventional waveguide and resimulating it. Figure 5(b) shows
the simulated H-field amplitudes with the defect. The excited
wave is transmitted bidirectionally, and the H field radiates ev-
erywhere in this waveguide. To clearly show this, the H-field
distributions for conventional waveguides with and without
defects are plotted in Fig. 5(d). Without defects, the forward
and backward fields are symmetric (solid line). When the
defect is introduced, the field amplitudes become asymmetric
(dashed line), with an increase before the defect and a de-
crease after it, demonstrating the backward reflection induced
by the defect. These results demonstrate that our waveg-
uide supports a robust USMMI mode without backscattering

FIG. 6. (a) Schematic of multiple SMP modes conversion based
on the symmetric splitter. Simulated Hz-field amplitudes for ω =
1.08ωp. The interference modes are converted to odd (b) and even
(d) modes. (c) The even mode is converted to the odd mode.

against defects, in contrast to the conventional bidirectional
waveguide with backscattering.

F. Multiple modes conversion and phase modulation
based on USMP

Based on the splitter, we further design a structure to
achieve the conversion among multiple modes, as shown in
Fig. 6(a). In this structure, the left and right parts are symmet-
ric waveguides, and the silicon thickness is d in the middle
part. The input mode is equally divided and then recombines
into a single output mode, with a phase difference �ϕ =
ϕ0 + 4kLy, where ϕ0 is the initial phase difference, and Ly is
the position of the center of the metal bar along the y axis. It
is found that the incident mode can be converted to an even
mode when �ϕ = 2nπ (where n is an integer) and to an odd
mode when �ϕ = (2n + 1)π . The mode conversion satisfies
the equations

Ly =
{

2nπ−ϕ0

4k for even mode,
(2n+1)π−ϕ0

4k for odd mode.
(10)

where n = . . . − 2,−1, 0, 1, 2 . . . , this indicates that mul-
timode conversion can be realized by tuning Ly. We first
consider a special case of mode conversion from an even mode
to an odd mode, where ϕ0 = 0. Here, we take ω = 1.08ωp

as an example, corresponding to k = 2.153kp. Thus the the-
oretical value is found to be Ly = 0.0580λp for n = 0 using
Eq. (10). To verify this, we perform full-wave simulations
and the simulated Hz field for ω = 1.08ωp is displayed in
Fig. 6(c). The even mode is converted into odd modes when
Ly = 0.0580λp as expected. Furthermore, our FEM simula-
tions demonstrate that the USMMI mode is converted into
both even and odd modes when Ly = −0.0283λp and Ly =
0.0297λp, as shown in Figs. 6(b) and 6(d). It is found that
ϕ0 = 0.4882π , and the values of Ly also satisfy Eq. (10) when
n = 0. The results demonstrate that our structure achieves
not only the conversion between USMMI and single mode
but also the conversion between odd and even modes. Inter-
estingly, we further discover a unique index-near-zero (INZ)
odd USMP mode without phase variation (k = 0) supported
by the SDS waveguide at THz frequencies, which is distinct
from USMP in the conventional InSb-Si-Metal waveguides
[31,34]. These waveguides do not support INZ mode in the
upper nontrivial band gap. Based on the INZ odd mode in
our waveguide, THz phase modulation is achieved. To illus-
trate this, we first calculate the dispersion curves of odd and
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even modes for different silicon thicknesses 2d in the upper
band gap, as shown in Figs. 7(a) and 7(b), respectively. Both
dispersion curves shift to the left as d decreases. For a given
frequency (ω), the propagation constant (k) of the even mode
gradually approaches zero (keven → 0), but keven �= 0 as d
decreases, whose dispersion is the same as that of the conven-
tional InSb-Si-Metal waveguides [34]. In contrast to the even
mode, the most significant difference from the odd mode is the
presence of the INZ mode (kodd = 0). As an example, the cor-
responding frequency for the INZ odd mode is ω = 1.0517ωp

when d = 0.04λp, marked by the red dot in Fig. 7(b). Unlike
the regular even and odd modes, this INZ odd mode exhibits
a stable phase. To clearly verify this, we perform full-wave
simulations of the INZ mode at ω = 1.0517ωp, as seen in the
right inset of Fig. 7(b). For comparison, the result for the regu-
lar odd mode when d = 0.02λp is displayed in the left inset. It
clearly demonstrates the zero-phase-shift transmission of the
INZ odd mode, which is consistent with the theoretical results.

Next, utilizing the INZ odd USMP mode, we design a
structure to achieve phase modulation with a phase shift of
2π , as shown in Fig. 7(c). This structure consists of two
symmetric waveguides with different d , and the left part with
2d1 supports a non-INZ odd mode, while the right part with
2d2 supports an INZ odd mode. The point source (marked by
the star) is positioned at a distance of Lx from the interface
(dashed line). By adjusting Lx, we can precisely control the
output phase ranging from −π to π . To verify this, we per-
form simulations for different Lx values at ω = 1.0517ωp. As
an example, d1 = 0.02λp and d2 = 0.04λp, corresponding to
the green and red dots. Figure 7(d) shows the simulated Hz

field amplitudes for Lx = 279.5, 325.25, and 389 µm, with the
corresponding output phases being −π , 0, and π . To more
clearly demonstrate this, we plot the phase of the Hz field

along the lower InSb-Si interface for these three Lx values, as
shown in Fig. 7(e). As expected, the output phases are −π ,
0, and π due to the “supercoupling” effect [54,68]. These
results show that our waveguide can realize all-optical phase
modulation with a phase shift ranging from −π to π .

IV. DISCUSSION

Note that the performance of the SMP mode is strongly
dependent on the waveguide parameters, such as thickness,
dielectric constant of the dielectric layer, and the applied
magnetic field. The effects of dielectric thickness and mag-
netic field strength are previously illustrated in Fig. 2, using
silicon (Si) as a representative material. Here, we further an-
alyze the effect of the dielectric constant on the waveguide
characteristics by replacing Si (εr = 11.68) with a polymer
(εr = 2.28). Numerical calculations of the dispersion rela-
tions are performed for a symmetric waveguide with ωc1 =
ωc2 = 0.1ωp. Figure 8(a) shows the dispersion curves for
d = dc = 0.157λp, where dc = πc/(2

√
εrωb2 ) is the criti-

cal value d of the polymer. Evidently, two USMP modes
(red and blue lines) are supported in the upper bulk mode
band gap [1.005ωp, 1.0513ωp]. When d = 0.2λp > dc, the
waveguide supports three SMP modes in the upper band gap:
unidirectional even and odd SMP modes, and a bidirectional
high-order SMP mode, as shown in Fig. 8(b). These results
are consistent with those presented in Fig. 2. Furthermore,
replacing Si with a polymer, the critical thickness 2dc of
the dielectric layer is increased from 0.128λp to 0.314λp. It
is noteworthy that the thickness can be further extended to
4λp by employing a uniaxial ε-near-zero (UENZ) material, as
described in Ref. [69]. The results indicate that our waveguide
supports two USMP modes for different dielectric materials.
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Furthermore, more topological USMP modes can be sup-
ported by introducing metallic truncations to our InSb-Si-InSb
waveguide, as the InSb-metal interface supports USMP mode
[36]. To verify this, we calculated the dispersion relations
of the waveguide shown in Fig. 9(a). Figures 9(c) and 9(d)
illustrate the dispersion curves for symmetric and asymmet-
ric waveguides with d = 0.04λp and h = λp. Clearly, both
waveguides support four USMP modes: the InSb-Si interfaces
support USMP1 and USMP2, while the upper and lower
InSb-metal interfaces support USMP4 and USMP3, respec-
tively. For clarity, we simulated the wave propagation at ω =
1.05ωp in the symmetric waveguide, as shown in Fig. 9(b). As
expected, the middle InSb-Si-InSb structure supports forward
USMMI based on USMP1 and USMP2, while the upper and
lower InSb-Metal interfaces support backward USMP prop-
agation. These results demonstrate that multiple topological
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FIG. 9. Multiple USMP modes. (a) Schematic of the Metal-InSb-
Si-InSb-Metal waveguide. (b) Simulated Hz field amplitudes for ω =
1.05ωp. [(c) and (d)] Dispersion relations of SMPs for the symmetric
(ωc1 = ωc2 = 0.25ωp) and the asymmetric waveguide (ωc1 = 0.15ωp

and ωc2 = 0.25ωp) in the upper bulk mode band gap. The other
parameters are h = λp and d = 0.04λp.

modes can be realized by introducing metallic truncation to
our system.

V. CONCLUSION

In this work, we have proposed and investigated a slab
waveguide consisting of a nongyroelectric dielectric layer
sandwiched between two gyroelectric semiconductors sub-
jected to opposite external magnetic fields. The dispersion
characteristics of SMPs are analytically derived in both local
and nonlocal models. Our numerical results show that the
waveguide supports two truly USMP modes in the upper
topological bulk mode band gap. However, in the lower bulk
mode band gap, SMPs lose their strict unidirectionality due
to nonlocal effects. By leveraging the two USMP modes, we
demonstrate a magnetically controllable USMMI at THz fre-
quencies. Notably, USMMI exhibits strong robustness against
defects, with no backscattering, in contrast to conventional
bidirectional waveguides, which are susceptible to backscat-
tering. Furthermore, we realized a frequency and magnetically
tunable arbitrary-ratio splitter based on robust USMMI, en-
abling precise control of the splitter’s properties. Additionally,
multimode conversion is achieved based on the splitter. We
also identify a unique index-near-zero (INZ) odd USMP mode
supported by our waveguide, distinct from conventional InSb-
Si-Metal waveguides. Utilizing the INZ mode with zero phase
shift transmission, we have designed a phase modulator that
precisely controls the phase from −π to π . These results in
mode manipulation utilizing USMP—encompassing interfer-
ence, power, and phase control—offer a novel approach for
the flexible manipulation of THz topological waves.
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APPENDIX A: DERIVATION OF DISPERSION FORMULA
IN LOCAL MODEL

In this Appendix, we demonstrate Eq. (3) in the main text.
In the local model, the magnetic field of SMP has nonzero
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components

Hz1 = Ae−α1yei(kx−ωt ), y � d,

Hz = (G1eαd y + G2e−αd y)ei(kx−ωt ), −d < y < d,

Hz2 = Ceα2yei(kx−ωt ), y � −d

(A1)

for the upper semiconductor layer, middle dielectric layer,
and lower semiconductor layer, respectively. Using Maxwell’s
equations ∇ × H = −iωε0ε∞E and ∇ × E = iωμ0H, the
nonzero components (Ex and Ey) of the electric field in each
layer can be directly derived from Hz in Eq. (A1), thus Ex can
be written as

Ex1 = −
(
iα1ε11 − ikε21

)
ωε0εv1ε11

Ae−α1yei(kx−ωt ), y � d,

Ex = − αd

iωε0εr

(
G1eαd y − G2e−αd y

)
ei(kx−ωt ), −d < y < d,

Ex2 =
(
iα2ε12 − ikε22

)
ωε0εv2ε12

Ce−α2yei(kx−ωt ), y � −d.

(A2)
According to the boundary conditions of fields, Hz and Ex

are continuous at boundaries y = −d and y = d . Considering
the continuity of Hz, which requires Hz1 |y=d= Hz |y=d and
Hz2 |y=−d= Hz |y=−d , we obtain from Eq. (A1)

Ae−α1d = G1eαd d + G2e−αd d ,

Ce−α2d = G1e−αd d + G2eαd d .
(A3)

Considering the continuity of Ex, which satisfies Ex1 |y=d=
Ex |y=d and Ex2 |y=−d= Ex |y=−d , we obtain from Eq. (A2)(

k
ε21

ε11

− α1

)
Ae−α1d = εv1

αd

εr

(
G1eαd d − G2e−αd d

)
,(

k
ε22

ε12

− α2

)
Ceα2d = εv2

αd

εr

(
G2eαd d − G1e−αd d

)
. (A4)

By eliminating the four coefficients A, C, G1, and G2 in
Eqs. (A3) and (A4), the dispersion relation of SMPs can be
derived as

e4αd d =
[
1 − εr (ε11 α1−kε21 )

ε11 αd εv1

][
1 − εr (ε12 α2−kε22 )

ε12 αd εv2

]
[
1 + εr (ε11 α1−kε21 )

ε11 αd εv1

][
1 + εr (ε12 α2−kε22 )

ε12 αd εv2

] , (A5)

which corresponds to Eq. (3) of the main text.

APPENDIX B: DERIVATION OF FORMULA
IN NONLOCAL MODEL

In this Appendix, we demonstrate Eq. (6) in the main text.
When nonlocal effects are taken into account, the dispersion
relation of SMP can be derived by solving the hydrodynamic

and Maxwell’s equations as follows [36]:

∇ × H = −iωε0ε∞E + J,

∇ × E = iωμ0H,

β2∇(∇ · J) + ω(ω + iν)J + iωJ × ωcẑ = iωω2
pε0ε∞E.

(B1)

Since the SDS waveguide only supports the TM mode (Hx =
Hy = Ez = 0), the above equations for the lossless case (ν =
0) can be expressed as

∂Ẽy

∂x
− ∂Ẽx

∂y
= iωμ0H̃z,

∂H̃z

∂y
= −iωε0ε∞Ẽx + J̃x,

−∂H̃z

∂y
= −iωε0ε∞Ẽy + J̃y,

β2

[
∂2J̃x

∂x2
+ ∂2J̃y

∂x∂y

]
+ ω2J̃x + iωωcJ̃y = iωωp

2ε0ε∞Ẽx,

β2

[
∂2J̃x

∂x∂y
+ ∂2J̃y

∂y2

]
+ ω2J̃y − iωωcJ̃x = iωωp

2ε0ε∞Ẽy.

(B2)

In the nonlocal model, the nonzero field components
(Ẽx, Ẽy, H̃z) and the normal component (J̃) are found to have
the form [48]

Ẽx1 = (A1 expip1y +A′
1e−γ1y)ei(kx−ωt ),

Ẽy1 = −i(s1A1eip1y + s′
1A′

1e−γ1y)ei(kx−ωt ),

H̃z1 = i

ωμ0
(L1A1eip1y + L′

1A′
1e−γ1y)ei(kx−ωt ), y � d

J̃y1 = −ikH̃z1 + iωε0ε∞Ẽy1 , (B3)

for the upper semiconductor, and they can be written as

Ẽx2 = (A2e−ip2y + A′
2eγ2y)ei(kx−ωt ),

Ẽy2 = i(s2A2e−ip2y + s′
2A′

2eγ2y)ei(kx−ωt ),

H̃z2 = − i

ωμ0
(L2A2e−ip2y + L′

2A′
2eγ2y)ei(kx−ωt ), y � −d

J̃y2 = −ikH̃z2 + iωε0ε∞Ẽy2, (B4)

for the lower semiconductor, the parameters are given in the
main text. According to the continuous boundary conditions
of electric fields, we have Ẽx1 |y=d= Ex |y=d and Ẽx2 |y=−d=
Ex |y=−d . Combining this with the first equations in Eqs. (B3)
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and (B4) and the second equations in Eq. (A2), it is found that

A1eip1d + A′
1e−γ1d = − αd

iωε0εr

(
G1eαd d − G2e−αd d

)
,

A2eip2d + A′
2e−γ2d = − αd

iωε0εr

(
G1e−αd d − G2eαd d

)
. (B5)

According to the continuous boundary conditions of mag-
netic fields, H̃z1 |y=d= Hz |y=d and H̃z2 |y=−d= Hz |y=−d . By
combining the third equation in Eqs. (B3) and (B4) with the
second equation in Eq. (A1), we obtain

i

ωμ0
(L1A1eip1d + L′

1A′
1e−γ1d ) = G1eαd d + G2e−αd d ,

− i

ωμ0
(L2A2eip2d + L′

2A′
2e−γ2d ) = G1e−αd d + G2eαd d . (B6)

Unlike the local model, an additional boundary condition for
the nonlocal hydrodynamic model is required at the mag-
netized InSb-Si interface (x-z plane): J · ŷ = 0 [41]. This is
because the theoretical basis of this model is based on the

assumption that the electron density sharply vanishes per-
pendicular to the interface. Thus the additional boundary
condition can be written as J̃y1 |y=d= 0 and J̃y2 |y=−d= 0. Us-
ing the last equations from Eqs. (B3) and (B4), we have

R1A1eip1d + R′
1A′

1e−γ1d = 0,

R2A2eip2d + R′
2A′

2e−γ2d = 0,
(B7)

where Rj = k
ωμ0

Lj + ωε0ε∞s j and R′
j = k

ωμ0
L′

j + ωε0ε∞s′
j ,

with Lj = −ks j + ip j and L′
j = −ks′

j − γ j , j = 1, 2. By
eliminating the six coefficients A1, A2, A′

1, A′
2, G1, and G2

in Eqs. (B5) to (B7), the dispersion relation of SMPs can be
derived as

e4αd d =
2∏

j=1

Nj (B8)

with

Nj = ε∞αd/εr (γ js j + ip js′
j ) + k(γ j + ip j ) + (

k2 − k2
0ε∞

)
(s′

j − s j )

ε∞αd/εr (γ js j + ip js′
j ) − k(γ j + ip j ) − (

k2 − k2
0ε∞

)
(s′

j − s j )
,

which corresponds to Eq. (6) of the main text.
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