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We have theoretically investigated surface magnetoplasmons
(SMPs) in an yttrium-iron-garnet (YIG) sandwiched wave-
guide. The dispersion demonstrated that this waveguide
can support topological unidirectional SMPs. Based on
unidirectional SMPs, magnetically controllable multimode
interference (MMI) is verified in both symmetric and asym-
metric waveguides. Due to the coupling between the modes
along two YIG–air interfaces, the asymmetric waveguide
supports a unidirectional even mode within a single-mode
frequency range. Moreover, these modes are topologically
protected when a disorder is introduced. Utilizing robust
unidirectional SMP MMI (USMMI), tunable splitters have
been achieved. It has been demonstrated that mode conver-
sion between different modes can be realized. These results
provide many degrees of freedom to manipulate topological
waves. © 2025 Optica Publishing Group. All rights, including for
text and data mining (TDM), Artificial Intelligence (AI) training, and
similar technologies, are reserved.
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Topological unidirectional waves have attracted much atten-
tion due to their unique optical properties of wave propagation
protected from backscattering [1–4]. As analogs of quantum
Hall edge states in photonic crystals (PhCs) [5], unidirectional
edge modes were proven in yttrium-iron-garnet (YIG) PhCs [6],
and they were first experimentally observed at microwave fre-
quencies [7]. Due to the time-reversal symmetry broken by an
external magnetic field (EMF), such modes can travel in only one
direction and are robust against backscattering from a disorder
[8,9]. As another type of unidirectional mode, surface magne-
toplasmons (SMPs) were also proposed [10,11], attracting great
interest due to the rich physics of nonreciprocal and topological
materials [12–15]. Recently, topologically unidirectional SMP
propagation was experimentally verified in a YIG-based SMP
waveguide [16].

Owing to their nontrivial topologically protected properties
[17,18], unidirectional modes based on PhCs or SMPs are suit-
able for realizing topologically optical devices, such as logic

gates [19], lasers [20], slow light [21], and splitters [22,23].
Recently, multimode interference (MMI) was achieved using
topological PhCs, demonstrating robustness against a disor-
der [24,25]. Mode conversion has also been realized in a
YIG-based PhC waveguide [26]. More recently, magnetically
controllable MMI based on topological YIG PhCs was demon-
strated [27]. It is a natural desire to investigate whether an
SMP waveguide can achieve MMI and mode conversion. In
this Letter, we will show that magnetically controllable unidi-
rectional SMP MMI (USMMI) can be achieved. Based on such
USMMI, tunable splitters are designed in symmetric and asym-
metric structures, demonstrating robustness against a disorder.
Notably, a unidirectional even mode occurs within a single-mode
frequency range in the asymmetric waveguide, unlike in con-
ventional SMP waveguides. This finding enables us to achieve
efficient mode conversion through the coupling of different
waveguides.

We consider a waveguide composed of two YIG slabs sand-
wiched between a metal and dielectric, as shown in Fig. 1(a).
The dielectric layer with thickness h has a permittivity of εr. The
two YIG slabs with thickness d are magnetized by two opposing
EMFs (H1 and H2), along the ±z direction. Owing to the EMFs,
the YIG slabs are gyromagnetically anisotropic with a relative
permittivity of εm = 15 and permeability tensor µm [28,29]:

µ+m =

⎡⎢⎢⎢⎢⎣
µ1 −iµ2 0
iµ2 µ1 0
0 0 1

⎤⎥⎥⎥⎥⎦ , µ−m =

⎡⎢⎢⎢⎢⎣
µ′1 iµ′2 0

−iµ′2 µ′1 0
0 0 1

⎤⎥⎥⎥⎥⎦ (1)

with µ1 = 1 + ωm(ω0+iαω)

(ω0+iαω)2−ω2 , µ2 =
ωmω

(ω0+iαω)2−ω2 , µ′1 = 1+
ωm(ω′

0+iαω)

(ω′
0+iαω)2−ω2 , and µ′2 =

ωmω

(ω′
0+iαω)2−ω2 , where ω0 = 2πγH1, ω′

0=

2πγH2 (γ = 2.8 MHz/G is the gyromagnetic ratio) is the
resonance frequency, ω is the angular frequency, α is the
damping coefficient, and ωm is the characteristic circular fre-
quency. This waveguide can support the transverse electric
(TE) mode (Hx, Hy, Ez). By solving Maxwell’s equations with
the continuous boundary conditions, the dispersion relation of
SMPs can be derived analytically as follows (see the details
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Fig. 1. (a) Schematic of the proposed topological waveguide with
opposing EMFs in two YIG slabs. (b) Dispersion relation of the odd
mode (solid lines) and even mode (dashed lines) in the 2D symmet-
ric structure. Circles indicate results for the 3D realistic system. The
unidirectional propagation occurs in [ωm, 1.5ωm], marked by yellow.
The gray shaded area represents the YIG bulk modes. (c) Simulated
E-field amplitude at ω = 1.1ωm in the 3D waveguide. Distribution
of the Ez field along the y axis in symmetric (d1) and asymmetric
(d2) structures. Insets show the mode profiles. The parameters are
d = 0.1λm, h = 0.1λm, W = 0.05λm, and H1 = H2 = 893 G.

Supplement 1):

e2arh =
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)︂ (︂
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with M = k µ2
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tanh α1d and N = k µ′

2
µ′

1
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tanh α2d , where k is the

propagation constant and αr =
√︁

k2 − ϵrk2
0 (k0 = ω/c is the vac-

uum wavenumber), α1 =
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0
(µv = µ1 − µ

2
2/µ1 and µ′v = µ′1 − µ′2

2/µ′1 are the Voigt permeabil-
ities) are the attenuation coefficients in the dielectric, upper, and
lower YIG slabs, respectively. It is found from Eq. (2) that SMPs
have four asymptotic frequencies when k → ±∞: ωsp1 = ω0 +

0.5ωm, ωsp2 = ω0 + ωm, ωsp3 = ω
′
0 + 0.5ωm, and ωsp4 = ω

′
0 + ωm.

In the special case of H1 = H2, the dispersion relation of SMPs
in Eq. (2) can be simplified to the following:

k
µ2
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tanhα1d
+ αrµvtanh
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αrh
2
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= 0 (ES) (3a)

k
µ2
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αrh
2

)︃
= 0 (OS), (3b)

for the even-symmetric (ES) and odd-symmetric (OS) modes,
respectively. The presence of the linear term k in Eq. (3a) leads
to different dispersion for forward and backward propagation,
resulting in non-reciprocity.

First, we consider a symmetric structure (H1 = H2). The dis-
persion of SMPs in this waveguide can be numerically calculated
using Eq. (3a). Here, we take d = 0.1λm (λm=2πc/ωm), and
ωm = 10π × 109 rad/s for YIG [16], and use air as an example for
the dielectric with ϵr = 1 and h = 0.1λm. Figure 1(b) shows the
dispersion diagram for H1 = H2 = 893 G, which is equivalent to
ω0 = ω

′
0 = 0.5ωm. Due to the coupling between SMPs along the

two YIG–air interfaces, two nonreciprocal modes (OS and ES)

emerge, denoted by the solid and dashed lines. Clearly, a topo-
logical unidirectional propagation band occurs in [ωsp1,ωsp2],
corresponding to [ωm, 1.5ωm], as marked by the yellow shaded
area. The dashed lines represent light line with ω = ±kc. Such
unidirectional modes in the bandgap of the YIG bulk modes
with k2<µvϵmk2

0 (the gray shaded areas) are topologically pro-
tected due to the nontrivial bandgap [21,30]. Moreover, the 2D
structure can be accurately extended to a realistic 3D struc-
ture with a waveguide width W, truncated by two metal slabs
along the z direction. To illustrate this, we also numerically
solve the modes for the realistic 3D system with modal analy-
sis using COMSOL Multiphysics in Fig. 1(b), and the obtained
results for W = 0.05λm (see circles) are in good agreement with
those for the 2D system. When both the unidirectional ES and
OS modes are excited in the same waveguide, USMMI will
occur. To verify this, we simulate the wave propagation in the
3D waveguide shown in Fig. 1(c). A line current source with
ω = 1.1ωm is placed at the bottom of the air layer to excite
the two unidirectional modes. As expected, the excited wave
can only propagate in one direction without any backscatte-
ring. Importantly, USMMI with periodic fields of OS and ES is
achieved, which can be characterized by the beat length Lπ [31]:

Lπ =
π

|kodd − keven |
, (4)

where kodd and keven are the propagation constants of the odd and
even modes, respectively. Figure 1(d1) shows the corresponding
mode profiles (see the inset) and Ez distributions along the y axis
for the OS and ES modes in the 3D system, demonstrating their
symmetric features. It should be noted that our interest in this
work focuses on the unidirectional region.

MMI based on PhCs is useful for designing a tunable split-
ter [27,32], and either nonlinear mechanisms [33] or, as here,
SMP-based MMI can be employed for the same purpose. To
verify this, a tunable splitter based on the SMP waveguide is
proposed in Fig. 2(a). The input waveguide supports USMMI,
while the output waveguide supports a single-mode SMP, whose
dispersion relation in the metal–YIG–air–metal structure is the

Fig. 2. (a) Schematic of the splitter based on USMMI. (b) Analyt-
ical (solid line) and numerical (circles) results of beat length Lπ as
a function of ω. (c) Simulated E-field amplitudes in the symmetric
splitter at ω = 1.105ωm and 1.128ωm. (d) Transmission coefficients
of the symmetric splitter (H1 = H2 = 893 G) as a function of ω.

https://doi.org/10.6084/m9.figshare.28254668
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same as that of the OS mode in Eq. (3b) [14,16]. The point
source is placed at a distance of Lmmi (the length of the MMI)
from the junction. For USMMI, the inverted and direct images
of the input field periodically alternate with a constant Lπ , as
shown in Fig. 1(c). Figure 2(b) shows the analytic beat length
Lπ using Eq. (4) as a function of ω, indicated by the red solid
line. It can be seen that Lπ increases with ω across the entire
USMMI region. Moreover, we calculate the numerical values of
Lπ by full-wave simulations for various frequencies, as shown
by the circles in Fig. 2(b), which agree well with the analytical
values. To verify the tunability of the splitter, the transmission
coefficients of the symmetric splitter (H1 = H2 = 893 G) as a
function of ω are shown in Fig. 2(d). Here, we take the loss
with α=3 × 10−5 as an example (for the impact of loss, see
Supplement 1). Asω changes from 1.09ωm to 1.15ωm, the trans-
mission of each output oscillates between nearly 0 and 1. The
total transmission is always 1 for lossless (α = 0) due to the
topological unidirectional feature. To clearly illustrate this, the
simulated E-field amplitudes of the splitter at ω = 1.105ωm and
1.128ωm are displayed in Fig. 2(c). The value of Lmmi satisfies as
Lmmi ≈ 12.1Lπ(1.105ωp) ≈ 11.1Lπ(1.128ωp), with an inverted (direct)
image of the incident field are realized at the upper (lower) cor-
ner. Consequently, the unidirectional SMP propagates upward
(downward) along Output1 (Output2) at frequencies of 1.105ωm

(1.128ωm) as expected. The results demonstrate that a frequency
splitter based on USMMI is achieved. It should be noted that a
magnetically controllable power splitter (see Supplement 1) can
also be realized using USMMI.

Second, we analyze an asymmetric structure (H1 ≠ H2). Here,
we take H1 = 893 G and H2 = 300 G as an example, with other
parameters being the same as in Fig. (1). Using Eq. (2), we
numerically calculate the dispersion relation of SMPs for the
asymmetric waveguide. Figure 3(a) displays the dispersion dia-
gram for d = 0.1λm. Due to the asymmetric coupling between
modes along the two YIG–air interfaces, the waveguide supports
four modes: EA, OA, S1, and S2 modes. The EA and OA mode

Fig. 3. (a) and (b) Dispersion relation of SMPs in an asymmetric
waveguide for H1 = 893 G and H2 = 300 G. (a) d = 0.1λm and
(b) d = 0.05λm. The yellow shaded area represents the region of
USMMI between the OA and EA double modes, while the bluish
shaded area represents the unidirectional EA single mode. S1 and
S2 represent the single modes supported at the YIG–air surfaces.
(c) Simulated E-field amplitudes in the asymmetric splitter at ω =
1.033ωm and 1.062ωm. (d) USMMI bandwidth ∆ω as a function of
H1 and H2.

Fig. 4. (a) and (c) Simulated E-field amplitudes in symmetric (a)
and asymmetric (c) structures. (b) and (d) Distributions of E-field
amplitudes in (a) and (c) along the upper YIG–air interface (gray
dashed lines), respectively. The blue solid and red dashed lines
represent the results with and without the obstacles, respectively.
The operating frequency is ω = 1.28ωm.

profiles at ω = 1.1ωm are illustrated in Fig. 1(d2), exhibiting
even-asymmetric (EA) and odd-asymmetric (OA) characteris-
tics, respectively. The S1 and S2 modes can only propagate at
a single surface of the upper or lower YIG–air interface. As
shown in Fig. 3(a), there is also a USMMI band (yellow shaded
area) for the EA and OA modes in [ωsp1,ωsp4], where ωsp1 = ωm

and ωsp4 = 1.168ωm. More importantly, there is a bandwidth of
[1.228ωm, 1.315ωm] that supports only a single unidirectional
EA mode, which differs from the symmetric waveguide shown
in Fig. 1(b). The existence of such a single EA mode is due
to the strong coupling between the S1 mode and the higher-
order EA modes. Figure 3(b) shows the dispersion diagram for
d = 0.05λm. It is found that the band of the single EA mode is
significantly affected by the YIG thickness d and disappears
when d decreases from 0.1λm to 0.05λm. Figure 3(c) shows
the simulated E-field amplitudes in the asymmetric splitter at
ω = 1.033ωm and 1.062ωm. Similar to the symmetric splitter,
the distance Lmmi satisfies Lmmi ≈ 11.9Lπ(1.033ωm) ≈ 10.9Lπ(1.062ωm);
thus, the SMP propagates upward and downward as expected.
Moreover, the USMMI bandwidth is not affected by d but is only
related to H1 and H2, resulting from the magnetically control-
lable asymptotic frequency ωsp. Figure 3(d) shows the USMMI
bandwidth versus the magnetic fields H1 and H2, defined by
∆ω = max

(︂
0.5ωm −

|H1−H2 |
1786 ωm, 0

)︂
. It can be seen that the band-

width ∆ω is magnetically controllable by varying H1 and H2,
and reaching a maximum value of 0.5ωm when H1 = H2.

Due to the topological protection of the unidirectional mode
[18], our proposed SMP waveguides are robust against a disor-
der. To verify this robustness, two 1 mm square YIG obstacles
were introduced into the air layer of both the symmetric
[Fig. (1)] and asymmetric [Fig. (3)] waveguides. Figures 4(a)
and 4(c) show the simulated results of full-wave simulations
at ω = 1.28ωm, respectively. As seen in Fig. 4(a), the pattern
of USMMI in the symmetric waveguide remains almost con-
stant before and after the obstacle. Similarly, it is invariant
in the asymmetric waveguide. More importantly, it is found
from Fig. 4(c) that the newly emerged unidirectional EA mode
effectively circumvents the obstacle without any backscattering,
clearly demonstrating its unidirectional dispersion property in
Fig. 3(a). Figures 4(b) and 4(d) show the distributions of E-field
amplitudes along the upper YIG–air interface, corresponding
the gray dashed lines in Fig. 4. For comparison, the results with-
out defects are also shown by the red dashed lines. The field
amplitudes closely resemble those with obstacles (blue solid
lines), demonstrating the strong robustness of the SMP modes
in our proposed symmetric and asymmetric systems.

https://doi.org/10.6084/m9.figshare.28254668
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Fig. 5. Structure of mode conversion with (a) and without (c)
additional metal plate. (b) and (d) Simulated Ez field amplitudes
in the symmetric (a) and asymmetric (c) structures, demonstrating
that the unidirectional multiple modes are transferred to a single
even mode. The stars mark the source with ω = 1.28ωm, and the
dashed lines in (c) and (d) represent the boundaries between distinct
waveguides.

Finally, we demonstrate the capability of mode conversion
between different modes. For this purpose, two different types of
mode conversion are considered. The first involves by inserting
a metal plate into the waveguide, analogous to the combination
of two splitters, as shown in Fig. 5(a). In this waveguide, an
excited wave is equally split into two waves, with the difference
of initial phase ∆ϕ0 and displacement ∆l, and then they coupled
to a wave. Mode conversion occurs only when k∆l + ∆ϕ0 = nπ,
where ∆l = 4yc, and yc is the center position of the metal plate
along the y axis. The metal is assumed to be a perfect electric
conductor (PEC) with a length of 1.4λm. By appropriately adjust-
ing yc, the incident mode can be converted to an even mode when
n = 0,±2,±4 . . . and to odd modes when n = ±1,±3,±5 . . ..
Figure 5(b) shows the simulated Ez field pattern forω = 1.28ωm.
It is found that the conversion between multiple modes and the
even mode can be achieved, when yc = −0.036λm. Furthermore,
the conversion between the even and odd modes can also be
realized by varying yc in this waveguide. More importantly, the
second type of mode conversion, without additional metal plate
to change the wave phase, is proposed by connecting the two
waveguides shown in Fig. 5(c). In this structure, the left part
is a symmetric waveguide [Fig. 4(a)], while the right part is an
asymmetric waveguide [Fig. 4(b)]. Figure 5(d) shows the simu-
lated Ez field pattern for ω = 1.28ωm. Since only one even mode
exists in the right waveguide at this frequency, the excited mul-
tiple modes are converted into a single even mode as expected,
possessing the advantages of the simple mode conversion struc-
ture. Therefore, we conclude that mode conversion, both with
and without the insertion of a metal, can be achieved.

In conclusion, we have proposed a waveguide composed
of two YIG slabs sandwiched between metal and dielectric
layers, which supports multiple SMP modes. The dispersion
properties of these SMPs have been analyzed, exhibiting a uni-
directional feature. We demonstrated that robust USMMI can
be achieved in SMP waveguides, overcoming the limitation of
backscattering in traditional waveguides. Furthermore, tunable
splitters based on USMMI have been designed in both symmet-
ric and asymmetric structures. USMMI has been shown to be
immune to disorders, and mode conversion can also be realized.
Notably, the asymmetric waveguide supports only an even mode
within a specific single-mode frequency range, differing from

the behavior observed in a symmetric waveguide. These results
can be extended to terahertz and optical frequencies, offering
significant flexibility to manipulate topological waves.
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