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Abstract: We comprehensively review several general methods and analytical tools used for causality
evaluation of photonic materials. Our objective is to call to mind and then formulate, on a math-
ematically rigorous basis, a set of theorems which can answer the question whether a considered
material model is causal or not. For this purpose, a set of various distributional theorems presented in
literature is collected as the distributional version of the Titchmarsh theorem, allowing for evaluation
of causality in complicated electromagnetic systems. Furthermore, we correct the existing material
models with the use of distribution theory in order to obtain their causal formulations. In addition to
the well-known Kramers–Krönig (K–K) relations, we overview four further methods which can be
used to assess causality of given dispersion relations, when calculations of integrals involved in the K–
K relations are challenging or even impossible. Depending on the given problem, optimal approaches
allowing us to prove either the causality or lack thereof are pointed out. These methodologies should
be useful for scientists and engineers analyzing causality problems in electrodynamics and optics,
particularly with regard to photonic materials, when the involved mathematical distributions have to
be invoked.

Keywords: photonic materials; causality; Kramers–Krönig relations; Titchmarsh theorem; Paley-
Wiener theorem; distribution theory; fractional calculus

1. Introduction

The time-domain response of electromagnetic system has to be causal [1–4], i.e., a sys-
tem cannot respond before the excitation starts. Hence, causality restricts the characteristics
of any system, not only in the time domain but also in the frequency domain. Therefore,
it is often stated in literature that real and imaginary parts of various complex parame-
ters and characteristics (e.g., susceptibilities and frequency responses) are related by the
Kramers–Krönig (K–K) integral relations [4]. The K–K relations are also valid between the
modulus logarithm and the argument of the frequency-domain response (e.g., between the
phase delay and the attenuation of a solution to a wave-propagation problem). However,
it occurs that integrations in the K–K relations are not straightforward, and sometimes
even impossible to perform. It stems from singular, highly oscillatory, or even diverging
integrands, and infinite integration limits in the Hilbert transformation [5]. Therefore, the
integrals cannot be evaluated in many important practical cases because they are divergent
or undefined [6]. The problems concerning causality and the K–K relations are studied not
only in electrodynamics [7–11] but also in acoustics [12–16], solid mechanics [17,18] and
the control theory [19].
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Although the subject of causality and dispersion of electromagnetic waves in photonic
materials (e.g., dielectrics) was initiated in 1927 by the seminal papers of Kramers and
Krönig [20,21], it has remained active in literature up to now [22]. Furthermore, classical
books, devoted solely to this subject, are published [4]. As one can notice, although the
book [4] was published in 1972, it has remained the initial point for many investigations
referring to the subject, and constitutes the basic reference in this research area. On the
other hand, a discussion related to origins of the Titchmarsh theorem recently appeared in
literature [23]. This theorem establishes the equivalence between causality and the K–K
relations. It occurs that it is a compilation of two important theorems, i.e., the Paley–Wiener
theorem and the Marcel Riesz theorem. Therefore, the Authors of [23] have perceived the
need for studying the subject with the use of rigorous mathematical tools. This approach,
although often longer than the one presented in physics literature, has the advantage of
being more precise.

Let us present some recent results related to causality in electrodynamics and optics.
In [17], the K–K relations, which are valid for a general class of linear homogeneous or
inhomogeneous media, are derived. That is, the proof of the K–K relations proceeds
without a priori knowledge of wave velocity in the medium supporting the wave, when the
frequency goes towards infinity. In [10], the K–K relations are derived for the effective index
of modes propagating in optical waveguides. When material dispersion and absorption
can be neglected within the frequency range of interest, the evanescent modes introduce
an effective loss term in the K–K relations, meaning that these relations are valid even if
material absorption is negligible within the frequency range of interest. In [11], a novel
approach to the standard one is proposed for the derivation of the K–K relations for linear
optical properties. That is, this approach is not based on contour integration and the Cauchy
integral formula. Although this derivation still employs analytic behavior of the property
under consideration, it employs only elementary properties of the Hilbert transformation
to obtain the second formula of the K–K pair, from the Herglotz representation of the
optical property as a Herglotz function. In [24], linear-response laws and causality within
the time and frequency domains are analyzed in electrodynamics. It is demonstrated
that one can violate causality in the frequency domain by making a vanishing-absorption
approximation. Our contribution to this subject relies on generalization of the K–K relations
for evaluation of causality in power-law media. In general, for square-integrable functions
of the frequency, the validity of classical K–K relations is equivalent to causality in the time
domain [1,4,17]. Things get complicated when the K–K relations are verified between the
modulus logarithm and the argument. Then, the considered function does not belong to
the class of square-integrable functions, and one can employ classical K–K relations with
subtractions, but their satisfaction does not mean that the originally considered function is
causal [13,17]. That is, the dispersion relation can be formulated for the considered system.
It is based on the assumption that the subtracted logarithm of the response is causal, but the
considered response function does not have to be causal. Therefore, we address this issue
in [25], where the K–K relations are generalized towards non square-integrable functions.
That is, the K–K relations with one and two subtractions are formulated. Their validity and
satisfaction of additional assumptions imply causality of the considered function. Then,
the formulated theory is applied to the analysis of electromagnetic media characterized by
power-law frequency dispersion [25] and fractional-order (FO) models [26]. However, in
our opinion, it might still be unclear for community members how to apply the developed
mathematical tools to causality evaluation.

Therefore, we have decided to set in order the theory of causality and prepare the
review of various analytical techniques allowing for evaluating causality of photonic
materials. It includes the classical methods and models known from electrodynamics hand-
books [7], as well as recently published results on causality evaluation [25,26]. Furthermore,
we also consider various causality tests, which allow for establishing minimal limits for
losses, for metamaterials [27,28]. Therefore, one can easily find their own approach to
causality evaluation when a new model is formulated in classical electrodynamics. How-
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ever, it is worth noticing that the procedure of canonical quantization of macroscopic
electromagnetism [29] requires satisfaction of the K–K relations by dielectric functions of a
linear, inhomogeneous, magnetodielectric medium. Hence, our review should hopefully
also be useful in quantum-electrodynamics research. The paper begins with a short intro-
duction of the notation, definitions, and basic mathematical theorems used throughout
the paper. In Section 3, the problem of causality is presented, with various mathematical
models applicable in electrodynamics and optics. However, we do not focus on physical
motivations for these models, but we rather formulate mathematical approaches allowing
for causality evaluation. Analytical methods for causality evaluation are presented in
Section 4, whereas a set of examples is presented in Section 5. In this paper, the most impor-
tant models of photonic materials are analyzed in terms of causality with the use of precise
mathematical tools. Furthermore, the set of various distributional theorems presented in
literature is collected as the distributional version of the Titchmarsh theorem, allowing us
to evaluate causality of complicated electromagnetic systems on a mathematically rigorous
basis. Hopefully, researchers interested in evaluating causality of novel models can use our
paper as a template for their own mathematical derivations and proofs.

2. Review of Background Mathematics
2.1. Basic Notations

In this paper, a standard engineering notation is employed, which denotes an imag-
inary unit as j =

√
−1. For the complex number s = u + jv, we denote its real part as

<s = u, and its imaginary part as =s = v. The (open) right half-plane is denoted as
C+ = {s ∈ C : <s > 0}. We denote the space of all functions which are holomorphic in
the right half-plane and bounded by a polynomial as H+. To be more precise: G ∈ H+

means that the function G is holomorphic in the right half-plane, and there exist l ∈ N and
a constant A(σ) such that for all σ > 0

|G(s)| ≤ A(σ)|s|l (1)

for all s ∈ C+ satisfying <s ≥ σ > 0.
Then, we define the Fourier transformation for the absolutely integrable function f (t),

using the formulation applied in electrical sciences

F ( f )(ω) = F(ω) =

ˆ +∞

−∞
e−jωt f (t)dt (2)

whereas the inverse Fourier transformation is given by

F−1(F)(t) = f (t) =
1

2π

ˆ +∞

−∞
ejωtF(ω)dω. (3)

In order to change the settings of the Fourier transformation to the one widely applied
in mathematics and physics, one should replace the imaginary unit j with −i in (2) and (3)
(where i =

√
−1) [8]. Various literature sources which we refer to sometimes apply the

mathematical i-convention; hence we convert those results to the engineering j-convention.
Among various elementary functions, we often refer to the Heaviside step function

u(t), defined as u(t) = 1 for t ≥ 0 and u(t) = 0 for t < 0. Then we refer to the signum
function sgn(t) defined as sgn(t) = t/|t| for t 6= 0 and sgn(t) = 0 for t = 0. One should be
aware that these functions appear as regular tempered distributions and, as such, should
be identified up to the Lebesque measure zero sets. Hence, in both cases, it actually does
not matter how the functions are defined for t = 0.

In this paper, we often refer to the concept of Hölder continuous functions. We call the
function f : R→ C a Hölder continuous one (with an exponent α ∈ (0, 1]), if there exists
such a constant L > 0 that

| f (t1)− f (t2)| ≤ L|t1 − t2|α (4)
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for all t1, t2 ∈ R. If the condition (4) is satisfied on every interval [−M, M] ⊂ R (with a
constant L = L(M) possibly depending on M), we can say that the function is locally Hölder
continuous. We should mention here that the case α = 1 corresponds to Lipschitz continuous
functions. One can also notice that the class of locally Hölder continuous functions covers
all the functions with a continuous derivative, but it is essentially larger (with the function
f (t) =

√
|t| as an example of Hölder continuous function with the exponent α = 1/2).

In this paper, the Hilbert transformation [5] of the function f : R→ R is applied. It is
defined as

(H f )(x) =
1
π

 +∞

−∞

f (t)
x− t

dt =
1
π

lim
ε→0+

ˆ
|x−t|≥ε

f (t)
x− t

dt. (5)

The classical domain of this definition is the space Lq(R) for any q ∈ (1,+∞). The
definition (5) can be formulated for a wide class of distributions, which is discussed below.

2.2. Fractional Calculus

In modeling of dielectrics, one can find FO derivatives, hence the notation is fixed
below. Various approaches to fractional calculus are considered in literature, i.e., Riemann-
Liouville, Caputo, Grünwald–Letnikov and Marchaud, to mention just a few. For ap-
propriate definitions, refer to classical monographs [30–32]. In this paper, when the frac-
tional derivative of order α > 0 is applied, its Marchaud definition is used (refer to [31]
Sections 5.4–5.5)

Dα f (t) =
{α}

Γ(1− {α})

ˆ +∞

0

f (n)(t)− f (n)(t− τ)

τ1+{α} dτ (6)

for α = n + {α} (n ∈ N ∪ {0} and {α} ∈ (0, 1)). In (6), the function f is assumed to be
sufficiently smooth, e.g., f ∈ Cn+1(R) with | f (n)| bounded by a function which is not
growing too quickly in ±∞.

The main reasons behind the usage of the Marchaud derivative in our considerations
are as follows [33,34]:

• The Marchaud derivative of the order α ∈ (0, 1) for the function f exists, if f : R→ R
is bounded and locally Hölder with an appropriate exponent.

• For the Marchaud derivative of the order α of the exponential function ejωt (where
ω ∈ R is fixed), one obtains

Dαejωt = (jω)αejωt. (7)

• The Marchaud and Grünwald–Letnikov derivatives coincide for a very broad class
of functions.

• The Marchaud derivative satisfies the semigroup property for all the f functions for
which this definition coincides with the Grünwald–Letnikov definition, i.e., Dα(Dβ f ) =
Dα+β( f ) where α, β > 0.

It is demonstrated in [33,34] that, in order to obtain the equivalence between the
results in the time and frequency domains, the FO derivative modeling electromagnetic
systems should be representable in the phasor domain (i.e., satisfy (7)) and satisfy the
semigroup property. From this point of view, we considered in [33,34] the following
definitions of FO derivatives applied for the electromagnetic modeling: Riemann–Liouville,
Caputo, Liouville–Caputo, Liouville, Marchaud, Grünwald–Letnikov, Caputo–Fabrizio,
Atangana–Baleanu, Atangana–Koca–Caputo and the conformable derivative. Out of these
most popular approaches, only the Grünwald–Letnikov and Marchaud definitions (which
are actually equivalent for a wide class of functions) satisfy the semigroup property and
are naturally representable in the phasor domain. Therefore, we employ the Marchaud
derivative in our research focusing on causality evaluation of photonic materials.
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2.3. Distribution Theory

The distribution theory is applied in our investigations; therefore the notation is fixed
below. It is a very formal mathematical theory, which is widely applied in many branches
of science and engineering. However, the very formal formulation of this theory, e.g.,
proposed in purely mathematical books [35,36], is not straightforwardly applicable in
applied physics and engineering. Even though alternative attitudes allow for different
views on distributions, they are based on the same foundations. Therefore, we refer a reader
to literature sources [37–39], which provide different perspectives on the distribution theory.

The support of the continuous function ϕ : R→ R is the set [37]

supp(ϕ) = {t ∈ R : ϕ(t) 6= 0}. (8)

From now on, D denotes the space of test functions of the class C∞(R) with compact
support, endowed with appropriate topology (i.e., with the formal definition of all conver-
gent sequences within the space of test functions). The topology is given by an appropriate
family of seminorms, as described in Section 1.2.6 of [38]. The space dual to D, i.e., the
space of distributions, is denoted as D′. The linear continuous functional f on D is denoted
using the dual-pair notation 〈 f , ϕ〉, where f ∈ D′ and ϕ ∈ D. The space of Schwartz
functions, i.e., rapidly decreasing functions, is denoted as S . Its dual space, i.e., the space
of tempered distributions, is denoted as S ′. The Fourier transformation is defined for all
tempered distributions by the formula [38] Section 3.1.4

〈F ( f ), ϕ〉 = 〈 f ,F (ϕ)〉 (9)

for all ϕ ∈ S . The support of the distribution f is defined as the set supp( f ) being a
complement of the largest open set U, on which f vanishes [38] Section 1.3.1

∀ϕ∈D supp(ϕ) ⊂ U ⇒ 〈 f , ϕ〉 = 0. (10)

Let E denote the space of all C∞(R) functions. Then its dual E ′ is the space of distribu-
tions with compact support.

We should also refer to some spaces of test functions (and related spaces of distribu-
tions), which are useful when discussing the Hilbert transformation. Let us take q ∈ (1,+∞)
and q′ such that 1/q + 1/q′ = 1. Then, the space of test functions DLq′ ⊂ C∞(R) consists
of all ϕ ∈ C∞(R) such that all the derivatives ϕ(k) ∈ Lq′(R) for all k = 0, 1, 2... with the
topology defined by the family of seminorms inherited from Sobolev spaces (for details, one
is referred to (1.57) in [35]). Let D′Lq denote the space dual to DLq′ . The special case is q = 2
with D′L2 being dual to DL2 . The derivative of the order k of the function (or distribution) f
is denoted as Dk f . For the space D′Lq , one can formulate the following theorem:

Theorem 1 ([35] Theorem 1.26). The distribution u belongs to D′Lq iff there exists such a positive
integer m and such Lq(R) functions u0, u1, ..., um that u = ∑m

l=0 Dlul (where the derivatives are
in the distributional sense).

One can find a detailed discussion of properties of the spaces D′Lq in Section 10.2 in [5].
The relation between different subspaces of the space of distribution D′ can be sum-

marized as (see [5] Section 10.2)

E ′ ⊂ D′Lq ⊂ D′Lr ⊂ S ′ ⊂ D′ (11)

where q ≤ r.
Let us define the distribution p. v.(1/x), which is needed in the sequel, as follows:

〈p. v.(1/x), ϕ〉 =
 ∞

−∞

ϕ(y)
y

dy = lim
ε→0+

ˆ
|y|≥ε

ϕ(y)
y

dy. (12)
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As shown in [5] Section 10.7, the distribution p. v.(1/x) belongs to D′Lq for all q ∈
(1,+∞).

In [35] Lemma 1.8, the space S0 is defined as the set of all tempered distributions such
that F (S0) = D′L2 . Following this definition, Sq is defined as the space of such tempered
distributions that F (Sq) = D′Lq , and the Fourier transformation is a one-to-one mapping
between Sq and D′Lq .

If one considers two distributions f , g ∈ D′, then its convolution is not always well-
defined (refer to the discussion in Section 10.6 of King’s book [5]). However, when it is
possible to define the convolution of distributions f and g, it is defined as the distribution
h such that

〈h, ϕ〉 = 〈 f (x), 〈g(y), ϕ(x + y)〉〉 (13)

for the test function ϕ ∈ D. There are some cases, when the convolution of distributions is
well-defined (refer to the end of Sections 10.6 and 10.7 in [5]), that is:

• if f ∈ D′ and g ∈ E ′, then f ∗ g ∈ D′
• if f ∈ S ′ and g ∈ E ′, then f ∗ g ∈ S ′
• if f ∈ E ′ and g ∈ E ′, then f ∗ g ∈ E ′
• if f , g ∈ D′L2 , then f ∗ g exists
• if f ∈ D′Lp , g ∈ D′Lq and 1/p + 1/q ≥ 1 then f ∗ g exists, and f ∗ g ∈ D′Lr , where

1/r = 1/p + 1/q− 1.

The Hilbert transformation of the distribution f ∈ D′Lq is defined as the distribution
H( f ) (see [5] Equation (10.83)) satisfying the formula

〈H( f ), ϕ〉 = −〈 f ,H(ϕ)〉 (14)

where ϕ ∈ DLq′ . For the function f ∈ Lq(R), the Hilbert transformation can be written as
the convolution

H( f ) =
1
π

f ∗ p. v.(1/x), (15)

which is defined in the distributional sense (see [5] Equation (10.102) and the following
discussion ending at Equation (10.121)).

We should bear in mind some important properties of the distributional Hilbert
transformation. That is, the following properties are valid for q ∈ (1,+∞):

• For any distribution f ∈ D′Lq , one obtains (cf. Section 10.9 in [5])

H(H( f )) = − f . (16)

• Let f ∈ Lq(R) be a function. Then one obtains (see (4.30) in [5])

H( f (ax + b))(y) = sgn(a)H( f (x))(ay + b). (17)

• For any f ∈ D′Lq , the Hilbert transformation commutes with the distributional deriva-
tive (see (10.173) and the entire Section 10.10 in [5])

DH( f ) = H(D f ). (18)

• The Hilbert transformation of the Dirac delta is given by (see (10.85) in [5])

H(δ(x))(y) =
1
π

p. v.(1/y). (19)

• The distribution p. v.(1/x) belongs to D′Lq , and one obtains (see (10.87) in [5])

H(p. v.(1/x))(y) = −πδ(y). (20)
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• A similar result to the one given above can be stated for the translated distribution
f = p. v. 1

x−a . That is, one obtains

H
(

p. v.
1

x− a

)
(y) = −πδ(y− a). (21)

Although the above property is quite obvious, we were not able to find it given
directly in literature. Therefore, a short proof of this property is given. Let us take
the test function ϕ ∈ DLq′ and check (we use the definition (14), the variable change
property (17) for the transformation of Lq(R) function, and additionally the change of
variables x− a 7→ x)〈
Hp. v.

1
x− a

, ϕ

〉
= −

〈
p. v.

1
x− a

,Hϕ

〉
= − lim

ε→0+

ˆ
|x−a|≥ε

1
x− a

(H(ϕ))(x)dx =

− lim
ε→0+

ˆ
|x|≥ε

1
x
(H(ϕ))(x + a)dx = − lim

ε→0+

ˆ
|x|≥ε

1
x
(H(ϕ(·+ a)))(x)dx =〈

H
(

p. v.
1
x

)
, ϕ(·+ a)

〉
= −π〈δ, ϕ(·+ a)〉 = −πϕ(a)

which completes the proof of (21).

We also need to remember topology in the space S ′ of tempered distributions: One
says that the sequence of tempered distributions ( fn) ⊂ S ′ converges to a tempered
distribution f ∈ S ′ if

〈 fn, ϕ〉 → 〈 f , ϕ〉 (22)

for any Schwartz function ϕ ∈ S [37].

3. Causality in Electrodynamics and Optics

Let us consider Maxwell’s equations in the time domain

∇ ·D = ρ (23)

∇× E = −∂B
∂t

(24)

∇ · B = 0 (25)

∇×H =
∂D
∂t

+ J (26)

where E and H denote, respectively, the electric- and magnetic-field intensities, D and B
denote, respectively, the electric- and magnetic-flux densities, J and ρ denote, respectively,
the current and charge densities. In this paper, we focus on dielectric properties of isotropic
electromagnetic media, i.e., photonic materials, whose properties are described in the
frequency domain. It stems from the fact that the number of models of dielectric properties
of media is much larger than for magnetic properties. For such mathematical models, it
is crucial to approximate physical characteristics by using causal formulas. However, the
presented methods and tools can be extended towards magnetic characteristics. Further-
more, the obtained solutions of Maxwell’s equations should also be causal. Finally, having
the frequency response of media in the wave-propagation (or wave-guiding) problem,
one can evaluate causality using the theorems presented below, supported by methods of
their usage.

3.1. Basic Definitions

The function f : R → R (generally f : R → C) or the distribution f ∈ D′ is called
causal if its support supp( f ) ⊂ [0,+∞). The Fourier transform F = F ( f ) is called a causal
transform if supp(F−1(F)) ⊂ [0,+∞). In other words, one can assume that f (t) is causal
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if it can be represented as f (t) = u(t)g(t), where u(t) is the Heaviside step function and
g(t) = f (t) for t > 0 [40]. In practical terms, one should also assume that g(t) is the
function whose Laplace transform has a non-degenerate region of convergence.

In terms of physics, causality means that the effect does not precede the cause. Hence,
if one considers the electromagnetic system whose time-domain function f (t) describes
the system response to the Dirac delta excitation, then causality means that f (t) = 0 for
t < 0. It also means that response of the system depends only on excitation values from the
past. To sum up, the mathematical definitions of causality formulated above closely follow
physical understanding of this term.

3.2. Dielectric Models

Transformation of (23)–(26) into the frequency domain gives

∇ · D̃ = ρ̃ (27)

∇× Ẽ = −jωB̃ (28)

∇ · B̃ = 0 (29)

∇× H̃ = jωD̃ + J̃ (30)

where tilde denotes phasor representation of the physical quantity, i.e., a(t) = <
(
ãejωt),

and ω denotes the angular frequency. To solve this set of equations, one additionally needs
constitutive relations between D̃ and Ẽ as well as between B̃ and H̃. Hence, one can write

D̃ = ε(ω)Ẽ (31)

B̃ = µ(ω)H̃. (32)

Then one can also write that

D̃ = ε0Ẽ + P̃ = ε0(1 + χe(ω))Ẽ (33)

B̃ = µ0H̃ + M̃ = µ0(1 + χm(ω))H̃ (34)

where P̃ = ε0χe(ω)Ẽ and M̃ = µ0χm(ω)H̃ are, respectively, the electric and magnetic
polarizations, ε0 and µ0 are, respectively, the vacuum permittivity and permeability, χe(ω)
and χm(ω) are, respectively, the electric and magnetic susceptibilities of the medium.
As it has already been mentioned, our considerations are focused on isotropic dielectric
media. Therefore, below we consider general χ(ω) functions, which are mainly related
to dielectrics, but can also represent, in an obvious way, magnetic models of media (i.e.,
magnetic susceptibility).

In electrodynamics, it is required that χ(ω) is a causal transform [7], because all
dielectrics are not able to polarize instantaneously in response to an applied field. Alterna-
tively, one can require that the function ε(ω)

ε0
− 1 is a causal transform.

Let us formulate the first considered dielectric model, in which the transform ε(ω) is
a real constant. That is

ε(ω) = ε = ε0εr (35)

where εr is the constant relative permittivity. Then let us assume the ohmic conduction, i.e.,
the current flow whose density depends on the electric-field intensity as follows:

J̃ = σẼ. (36)

In (36), σ ∈ R denotes the electrical conductivity. Therefore, assuming that ω 6= 0, (30)
can be written as

∇× H̃ = jωε(ω)Ẽ (37)
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where
ε(ω) = ε0εr − j

σ

ω
(38)

includes ohmic losses within the complex permittivity ε(ω). This result can be general-
ized towards

ε(ω) = ε′(ω)− jε′′(ω) (39)

where ε′(ω), ε′′(ω) ∈ R are functions of frequency and ε′′(ω) describes all losses in the
electric field. If the losses in a dielectric material stem from ohmic conduction, then ε′′(ω) is
proportional to 1/ω. Otherwise, if losses stem from the bound charge and dipole relaxation
phenomena, then ε′′(ω) is not proportional to 1/ω. Analogously, one can write for the
permeability

µ(ω) = µ′(ω)− jµ′′(ω) (40)

where µ′(ω), µ′′(ω) ∈ R are functions of frequency.
Let us formulate a few popular models describing the response of dielectrics with the

use of permittivity:

• Djordjevic-Sarkar relationship for lossy dielectrics [6,41]

ε(ω) = ε0

1 +
∆ε′r

log10
ω2
ω1

ln ω2+jω
ω1+jω

ln10
− j

σ

ωε0

 (41)

where ω 6= 0. The first term in (41) is the relative permittivity at very high frequencies,
the second term is the broadband logarithmic term, and the third term comes from
conductivity. In (41), ∆ε′r, ω1, ω2 are model parameters. This formula gives a simple
closed-form expression, which approximates the measured permittivity of the popular
FR-4 substrate used for manufacturing printed circuit boards.

• Westerlund relationship for FO capacitors [42,43]

ε(ω) =
εβ

(jω)1−β
, β ∈ [0, 1] (42)

where ω 6= 0. It allows for formulating the constitutive relation (31) in the time domain
with the use of FO derivative as

εβE = D1−β
t D, β ∈ [0, 1]. (43)

Although this model does not explain the nature of internal processes in dielectrics, it
reproduces and predicts their behavior much better than any other theory (according
to the Authors of [42]). Therefore, it is referred to as an ’engineering’ model of
dielectrics. Furthermore, this model allows for obtaining the electrical characteristics
of FO capacitors, (refer to [43,44]).

• Power-law relationship for porous media [45]

ε(ω) = Aω−α, α ∈ [0, 1] (44)

where ω 6= 0, ε(ω) ∈ R, A is a constant, and α is close to 1.0 in a low frequency
region, and is within the range of 0− 0.5 in a high frequency region. The model (44)
describes the permittivity of porous media such as wet soils and sedimentary rocks,
which has been observed to be considerably different than in the case of water and
parent minerals.

3.3. Dielectric Relaxation

Let us formulate several popular dielectric models based on electric susceptibil-
ity χ(ω) in the complex domain (τ > 0 is the relaxation time, and ∆εr = εs−ε0

ε0
where

εs = ε(ω → 0+)):
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• Debye [46,47]

χ(ω) =
∆εr

1 + jωτ
. (45)

This model is frequently used to describe simple dielectric characteristics of electro-
magnetic media arising from bipolar relaxation. The formula (45) is characterized by a
single relaxation time, which is capable of handling materials with high-water content.
However, experimental studies show that the relaxation behavior of a wide range of
dielectrics strongly differs from the Debye relaxation formula. Therefore, a number
of phenomena such as broadness, asymmetry and excess in dielectric dispersion has
motivated the development of empirical response functions described below, such as
Cole-Cole, Cole-Davidson, Havriliak-Negami, and Raicu [46].

• Lorentz [7,47]

χ(ω) =
∆εrω2

0
ω2

0 + 2jωγ−ω2
(46)

where ω0 is the frequency of a pole pair (the undamped resonant frequency of the
medium), and γ is the damping coefficient. The model is based on the classical
theory of light-matter interaction, and describes the frequency-dependant polarization
due to bound charges. That is, bindings between electrons and nucleus in atom are
treated similarly to those of the mass-spring harmonic-oscillator system. It is worth
mentioning that any function obeying the K–K relations can be approximated as a
superposition of Lorentzian functions, to any precision [48]. Therefore, the Lorentzian
function (46) can be considered as a general building block for implementing causal
susceptibilities of various materials, e.g., metamaterials.

• Lorentz in high-frequency limit [7]

χ(ω) = −
ω2

p

ω2 (47)

where ω 6= 0 and ωp is the plasma frequency of medium. This model results
from (46), assuming that the frequency is far above the highest resonant frequency ω0
in the medium.

• Lorentz in high-frequency limit with static magnetic induction [7]

χ(ω) = −
ω2

p

ω(ω±ωB)
(48)

where ω 6= 0 and ω 6= ∓ωB. In (48), ωB is the frequency of precession of a charged
particle in magnetic field. This model is the extension of (47), which involves an
interaction between static magnetic field B0 and tenuous electronic plasma of uniform
density, when transverse waves propagate parallel to the direction of B0.

• Lorentz in FO generalization [49]

χ(ω) =

(
ωp
ω0

)2

1 + 2γ
(

j ω
ω0

)α
+
(

j ω
ω0

)2α
, α ∈ (0, 1] (49)

where ωp is the termed bulk plasma frequency associated with electrons, and γ is
the damping coefficient. This model extends the classical Lorentz model (46) for
a dielectric material with the use of FO derivatives, but it is formulated in the fre-
quency domain.

• Drude [47]

χ(ω) = −
ω2

0
ω2 − jωγ

(50)
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where ω 6= 0 and ω 6= jγ. In (50), ω0 is the Drude pole frequency and γ is the inverse
of the pole relaxation time. This model results from the application of kinetic theory to
electrons in solids for optical frequencies. It can be obtained from the aforementioned
Lorenz model (i.e., harmonic-oscillator model) when the restoration force is removed
(i.e., free electrons are assumed which are not bound to a particular nucleus).

• Cole-Cole [46,50–52]

χ(ω) =
∆εr

1 + (jωτ)α
, α ∈ [0, 2]. (51)

This model has been developed as an empirical extension of the Debye model (45),
which can be obtained for α = 1.

• Cole-Davidson [46,53]

χ(ω) =
∆εr

(1 + jωτ)β
, β ∈ [0, 1]. (52)

This model has been developed as an empirical extension of the Debye model (45),
which can be obtained for β = 1.

• Havriliak-Negami [46,54,55]

χ(ω) =
∆εr

(1 + (jωτ)α)β
, α, β ∈ [0, 1]. (53)

This model extends Cole-Cole (51) and Cole-Davidson (52) models.
• Raicu [46,56]

χ(ω) =
∆

((jωτ)γ + (jωτ)α)β
, α, β, γ ∈ [0, 1] (54)

where ∆ is the relative dielectric increment in the Raicu model. This model extends (53)
by including the additional parameter γ.

• Universal dielectric response [57–59]

χ(ω) = χα(jω)−α, α ∈ (0, 1) (55)

where ω 6= 0 and χα is a positive constant. In general, this model is valid for ω >> ωp,
where ωp is the loss-peak frequency. It describes the observed behavior of dielectric
properties demonstrated by solid-state systems. That is, it involves power-law scaling
of dielectric properties with frequency, which is widely observed in nature.

A particular dielectric model can be a weighted sum of the several susceptibility char-
acteristics χ(ω) presented above. For instance, the characteristic can be a weighted sum of
several Lorentz functions (46), defined for different pole pairs and damping coefficients [7].
In such a case, if each of the components is causal, then the considered model is causal
as well.

3.4. Frequency Response

If one obtains a causal solution to Maxwell’s Equations (23)–(26), then each of the
components of the vector field E, D, H, B can depend only on the previous excitation values
ρ, J. For instance, the relation between the excitation J and the response of electromagnetic
system (E, H) in the frequency domain can be written as follows [8,60]:

Ẽ(r) =
ˆ

V
Gee(r, r′) · J̃(r′) dv′ (56)

H̃(r) =
ˆ

V
Gme(r, r′) · J̃(r′) dv′. (57)

In (56) and (57), Gee(r, r′), Gme(r, r′) denote dyadic Green’s functions of electric-
electric and magnetic-electric type, respectively. Because the considered electromagnetic-
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field systems are linear and time-invariant, it is possible to write the relation between a
single excitation component (X(ω)) and a single output component (Y(ω)) in the frequency
domain. Then, one obtains

Y(ω) = G(ω)X(ω) (58)

where G(ω) denotes frequency response of the system.
For instance, let us consider one-dimensional (1-D) propagation of a monochromatic

plane wave along the z direction in a medium described by material parameters ε(ω)
and µ(ω). Then one can write the following Helmholtz equation for Ẽ = Ẽ(z)ix and
H̃ = H̃(z)iy:

∇2Ẽ(z) + k2Ẽ(z) = ∇ ρ̃(z)
ε(ω)

+ jωµ(ω) J̃(z). (59)

In (59), k2 = ω2µ(ω)ε(ω) is the square of complex-valued wavenumber. In optics, the
refractive index n(ω) is mainly used to describe an electromagnetic medium, which is a
dimensionless number describing how fast the light travels through the medium. That is,
n(ω) = c/v(ω), where v(ω) is the velocity of light in the medium and c is the velocity of
light in the vacuum. Hence, one can also write that k2 = n2(ω)(ω/c)2. If the refractive
index is a complex number for a given angular frequency, its real part indicates the phase
velocity, whereas its imaginary part describes the attenuation of electromagnetic waves in
the medium. Let us consider the signalling problem [61–63], where the electric field in the
homogeneous Equation (59) is excited by a source at the spatial-domain boundary. Hence
one obtains

∇2Ẽ(z) + k2Ẽ(z) = 0 (60)

whose general solution is given by

Ẽ(z) = Ẽ+e−jkz + Ẽ−e+jkz. (61)

in (61), Ẽ+ and Ẽ− denote, respectively, complex amplitudes of waves propagating in
the +z and −z directions, and +k and −k are complex roots of k2. Considering wave
propagation (or guiding) in the +z direction only, the propagation constant jk depends on
the choice of ε(ω) and µ(ω) functions, and is selected as the one with a positive real part.
Hence one obtains

Ẽ(z) = Ẽ+e−jkz (62)

where Ẽ+ is equal to Ẽ(z = 0). Such a solution is physically equivalent to impinging
of the plane wave on the half-space constituting a medium described by ε(ω) and µ(ω).
Then the wave is transferred into the medium and its time-domain waveform can be
obtained as described in [25]. Alternatively, one can consider (62) as a general solution of
the wave-guiding problem for, e.g., optical waveguide. Assuming the fixed length of the
wave-propagation distance z = L, and taking X(ω) = Ẽ(z = 0) and Y(ω) = Ẽ(z = L), the
formula (62) can be considered as the relation (58) where

G(ω) = e−jkL. (63)

Such a function is usually required to be a causal transform in electrodynamics. Fur-
thermore, one can require that G(ω) is relativistically causal. That is, not only the inverse
Fourier transform of G(ω) is equal to zero for t < 0, but the inverse Fourier transform of
G(ω)ejωL/c is also equal to zero for t < 0.

Let us consider FO models in electrodynamics, which start with constitutive relations
as follows [43,44,63]:

J = σαD1−α
t E, 0 < α ≤ 1 (64)

εβE = D1−β
t D, 0 < β ≤ 1 (65)

µγH = D1−γ
t B, 0 < γ ≤ 1. (66)
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Equation (43) is repeated here as (65) for the sake of completeness. When these
relations are applied to Maxwell’s Equations (23)–(26), then one obtains the FO Maxwell’s
equations in the following form:

∇ · E = 0 (67)

∇× E = −µγDγ
t H (68)

∇ ·H = 0 (69)

∇×H = εβDβ
t E + σαD1−α

t E. (70)

In order to analyze the 1-D propagation of a monochromatic plane wave along the
z-direction, one can apply the phasor-domain representation and arrive at the special
version of the Helmholtz Equation (59) with

k2(ω) = −
(

µγεβ(jω)β+γ + σαµγ(jω)1−α+γ
)

. (71)

With the additional assumption of the lack of current and charge sources within the
considered space, and assuming that there is no power dissipation due to Joule’s heating,
i.e., the current density is related to the electric-field intensity by the classical Ohm law
(α = 1)

J = σ1E (72)

with the conductivity σ1 = 0, the frequency response (i.e., the transfer function in the
frequency domain) is given by (cf. [63])

G(ω) = e−z√µγεβ(jω)
β+γ

2
= e−z√µγεβ(jω)ν

(73)

where ν = β+γ
2 .

For α = 1, σ1 = 0 and β = γ, one can write (67)–(70) in a compact form

∇× F = j
√

µβεβDβ
t F (74)

∇ · F = 0 (75)

where

F =
1√
2

 E√
Z f

+ jH
√

Z f

 (76)

is the Riemann-Silberstein (RS) vector in the time-fractional electrodynamics [64] and
Z f =

√
µβ

εβ
. Then, one can write the diffusion-wave equation in time domain for space

without sources
∇2F− µβεβD2β

t F = 0. (77)

Assuming the plane-wave, spherical and cylindrical symmetries of solutions to (77),
one obtains, respectively, the following transfer functions describing the 1-D wave propa-
gation [64]:

Gz(ω) = e−z√µβεβ(jω)β
(78)

GR(ω) =
1

4π

1
R

e−R√µβεβ(jω)β
, R > 0 (79)

Gr(ω) = − j
4

J0(j(jω)βr
√

µβεβ), r > 0. (80)

In (80), the function J0 is the Bessel function of the first kind of zero order, i.e.,

J0(z) =
+∞

∑
k=0

(−1)k 1
Γ(k + 1)2

( z
2

)2k
. (81)
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4. Methods and Analytical Tools for Causality Evaluation

Let us consider a complex-valued transfer function G : R→ C or distribution, which
is the Fourier transform of a certain time-domain function g : R→ C or distribution. It is
worth noticing that we do not assume a priori that g(t) is real-valued.

Approaches to causality evaluation are presented in Figure 1. Having G(ω), one can
evaluate causality by way of applying the Paley–Wiener theorem, calculating the inverse
Fourier transformation, finding a holomorphic extension to the right half-plane, or checking
various forms of the K–K relations. One should notice that, for the considered function
G(ω), not every approach can easily be applied to prove either causality or lack thereof.

Casuality evaluation
paths for 

Application of Paley-
Wiener theorem

Calculation of inverse
Fourier

transformation

Finding holomorphic
extension to right

half-plane

Checking K-K
relations for


Checking K-K

relations for


Figure 1. Approaches to causality evaluation.

4.1. Paley–Wiener Theorem

Let us start our considerations from the Paley–Wiener theorem, which allows for
characterisation of the modulus of the complex-valued L2 function in terms of causality.

Theorem 2 (Paley–Wiener, [65] Theorem XII). Let φ(ω) be a real nonnegative function, not
equivalent to 0 and belonging to L2(R). A necessary and sufficient condition that there should exist
a real- or complex-valued function g(t), vanishing for t ≤ t0, for some number t0, and such that the
Fourier transform G(ω) = F (g(t))(ω) should satisfy |G(ω)| = φ(ω), is that

ˆ +∞

−∞

| ln(φ(ω))|
1 + ω2 dω < +∞. (82)

One should notice that the Paley–Wiener theorem does not state that the complex-
valued function G(ω) is a causal transform. It states that, for the modulus φ(ω) satisfy-
ing (82), the causal transform G(ω) exists with the same modulus. It also states that if
φ(ω) = |G(ω)| does not satisfy (82), then G(ω) is surely not a causal transform. This
theorem is a valuable tool, which can be used to prove that the transfer function G(ω) is
not a causal transform.

4.2. Calculation of Inverse Fourier Transformation

The simplest approach to causality evaluation relies on calculating the inverse Fourier
transformation of the function G(ω). Then g(t) = F−1(G(ω))(t) is not causal if its support
is not contained in [0,+∞) (if g(t) is a continuous function, then it is enough to show
that it is not equal to zero for a certain t ≤ 0). Alternatively, g(t) is causal. The method
seems to be very simple, but it may be really difficult to calculate the inverse Fourier
transformation. In some cases, one knows the exact formula for the (inverse) Fourier
transform for a given function or distribution. On the other hand, in numerous cases the
exact formula is unknown.

In some cases, one can easily prove lack of causality by referring to the properties of the
inverse Fourier transform. For instance, if the function G(ω) is an L1(R) function, then the
inverse Fourier transform is a continuous function. Hence, it is enough to find a single point
t0 ∈ (−∞, 0] such that F−1(G(ω))(t0) 6= 0, e.g., to show that F−1(G(ω))(0) 6= 0. This
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idea may not be applied directly when G(ω) is an L2(R) function or a distribution which
is not represented by an L1(R) function. With the definition of the Fourier transformation
extended to the above-mentioned domains, one identifies the result up the sets of measure
zero. In this case, without continuity of the result, showing that the inverse Fourier
transform is non-zero at a single point does not prove lack of causality.

4.3. Holomorphic Extensions and K–K Relations

The classical perspective on causality is provided by the Titchmarsh theorem, which
works for functions g ∈ L2(R) (see Theorem 1.6.1 in [4]):

Theorem 3. If a square-integrable function G(ω) fulfils one of the four conditions below, then it
fulfils all four of them:

(i) The inverse Fourier transform g(t) of G(ω) vanishes for t < 0:

g(t) = 0 (t < 0).

(ii) G(v) is, for almost all v, the limit as u → 0+ of an analytic function G̃(u + jv), which
is holomorphic in the right half-plane and square integrable over any line parallel to the
imaginary axis: ˆ ∞

−∞
|G̃(u + jv)|2dv < C (u > 0).

(iii) <G and =G verify the first Plemelj formula:

<G(ω) = − 1
π

 +∞

−∞

=G(ω′)

ω′ −ω
dω′. (83)

(iv) <G and =G verify the second Plemelj formula:

=G(ω) =
1
π

 +∞

−∞

<G(ω′)

ω′ −ω
dω′. (84)

One should notice that the relations (83) and (84) hold in the sense of elements of the
L2(R) space, i.e., the equalities hold for almost all ω ∈ R.

The relations (83) and (84) are also referred to as the K–K relations or the dispersion
relations. This theorem delivers two aforementioned approaches to prove causality, i.e,
searching for an appropriate holomorphic extension of G(ω) to the right-half plane, and
proving the validity of the K–K relations (83) and (84).

If the function G(ω) is the Fourier transform of the real-valued function g(t), then it
is hermitian, i.e., it has an even real part and an odd imaginary part. Therefore, the K–K
relations (83) and (84) can be formulated for almost all ω ∈ R by the following integrals on
(0,+∞):

<G(ω) =
2
π

 +∞

0

τ=G(τ)

ω2 − τ2 dτ (85)

=G(ω) = −2ω

π

 +∞

0

<G(τ)

ω2 − τ2 dτ. (86)

It should be mentioned that the growth assumption in the case (ii) of Theorem 3 (i.e.,
that the maps Gσ(ω) = G̃(σ + jω) belong to L2(R) for all σ > 0, and that all the norms
‖Gσ‖L2(R) are uniformly bounded by the same constant C > 0) is vitally important. The
sole existence of a holomorphic extension of the function G(ω) may not be sufficient for
its causality. The case of G(ω) = e−ω2

is a good example. This function naturally extends
to the holomorphic function es2

, where s = σ + jω, while the inverse Fourier transform
F−1(G) = 1√

2π
e−t2/4 is not a causal function. The uniform boundedness of the norm
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‖Gσ‖L2(R) is the violated condition. It is because |Gσ(ω)| = eσ2
e−ω2

, thus, for σ→ +∞, the
norm can be arbitrarily large.

The general distributional version of the K–K relations, given as Theorem 5 in [25]
(following Theorem 3.10 in [35]), is presented below. This version is a generalization of
the well-known K–K relations with subtractions (as described in Section 1.7 of [4]). The
procedure of subtractions works for such a Fourier transform G(ω), which is not necessarily
in L2(R). However, when divided by some polynomial (ω − p)k of degree k, it belongs
to L2(R). The generalization towards distributions is sometimes required because the
division itself can introduce a singularity, resulting in a function which is not locally square
integrable (see the discussion in Section 4.2 in [25]). In the distributional version, it is
not required that the division result, i.e., F/(jω)k, is in L2(R), but it can be a distribution
belonging to a class D′Lq for some q ∈ (1,+∞), which can be broader than the functional
space Lq(R) (see Example 1 in [25]).

Theorem 4. Let us assume that F = (jω)kG, where G ∈ D′Lq . A necessary and sufficient
condition that F ∈ S ′ should be the boundary value in the S ′ topology of a function F̃(s) ∈ H+, i.e.,
that F and F̃ are, respectively, the Fourier and Laplace transforms of a distribution f = F−1(F),
with supp( f ) ⊂ [0,+∞), is that either

DkF =
1
jπ

F ∗ Dkp. v.
1
ω

(87)

or

F =
(jω)k

jπ

(
G ∗ p. v.

1
ω

)
. (88)

One should notice that (88) can be written with reference to the distributional version
of the Hilbert transformation as

F =
(jω)k

j
H(G). (89)

The other important detail hidden in this theorem is related to the growth condition
on the holomorphic extension. One should remember that the condition F̃(s) ∈ H+ means
that F̃ is holomorphic in C+, and that its growth is controlled by some polynomial as the
condition (1) states.

A slightly less general version of Theorem 4, which can be used in the case of distribu-
tion F being represented as a locally integrable function, is formulated below.

Theorem 5 (Theorem 6, [25]). Let us assume that k ∈ N ∪ {0} and F : R → C is a function
such that F(ω)/(jω)k is a locally integrable function of the growth at +∞ given by

|F(ω)| ≤ C|ω|k−ε (90)

for |ω| ≥ M, for some M > 0, C > 0 and for ε > 0. Let us also assume that

F =
(jω)k

j
H
(

F
(jω)k

)
+ Pk−1(ω) (91)

where Pk−1(ω) is a certain polynomial of the degree k− 1 at most. Then F is a causal transform.

In some cases, the K–K relations can be evaluated for the transfer function logarithm.
This attitude can result in sufficient conditions for causality.

Theorem 6 (Theorem 8, [25]). Let us assume that the function L : R→ C satisfies the following
conditions:

(A1) L : R→ C is a locally integrable, hermitian function;
(A2) |L(ω)| ≤ C|ω|ν for C > 0, ν ∈ (0, 1), |ω| ≥ M;
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(A3) the function K(ω) = L(ω)/(jω) is locally integrable;
(A4) K(ω) = 1

jH(K(ω));

(A5) V(ω) = −<(L(ω))
ω = =(K(ω)) is a nonincreasing and nonnegative function for ω ∈

(0,+∞);
(A6) U(ω) = 1

ω=(L(ω)) = <(K(ω)) is a nondecreasing function for ω ∈ (0,+∞).

Then eL(ω) is a causal transform.

The ‘holomorphic-extension’ approach can be generalized towards functions with a
polynomial growth. The first theorem can be found in [35] as Theorem 2.7.

Theorem 7 (Theorem 2.7, [35]). If g ∈ S ′+ (i.e., g is a tempered distribution with a support
in [0,+∞)), then its Laplace transform L(g)(σ + jω) = F (g(t)e−σt)(ω) belongs to H+ and
L(g)(σ + jω)→ F (g)(ω) in S ′ topology as σ→ 0+. Conversely, if G̃(s) = G̃(σ + jω) ∈ H+

and G(ω) is a limit of G̃(σ + jω) as σ → 0+ in S ′ topology, then there exists g ∈ S ′+ such that
G = F (g) and G̃ = L(g).

The theorem formulated above gives rise to practical sufficient conditions for causality
of the transform G(ω).

Theorem 8. Let us assume that there exists a function G̃ ∈ H+, a locally integrable function
G : R→ R, a positive constant r > 0 and a function f : R→ R such that

(i) f is locally integrable, with a growth in ±∞ limited by some polynomial, i.e., such that there
exist M > 0 and p ∈ N such that | f (ω)| ≤ |ω|p for |ω| ≥ M (this implies that f represents
a certain tempered distribution);

(ii) the functions Gσ : R→ R given by Gσ(ω) = G̃(σ + jω) are estimated by f , i.e., |Gσ(ω)| ≤
| f (ω)| for ω ∈ R and σ ∈ (0, r];

(iii) Gσ(ω)→ G(ω) as σ→ 0+ for almost all ω ∈ R.

Then there exists g ∈ S ′+ such that G = F (g) and G̃ = L(g).

Proof. This is a direct consequence of Theorem 7. Let us take any ϕ ∈ S and notice that

〈Gσ, ϕ〉 =
ˆ +∞

−∞
Gσ(ω)ϕ(ω)dω. (92)

The functions Gσ are definitely continuous (as sections of holomorphic function),
and hence locally integrable. Moreover, each of the integrals

´ +∞
−∞ |Gσ(ω)ϕ(ω)|dω and´ +∞

−∞ | f (ω)| |ϕ(ω)|dω exists. Because

|Gσ(ω)ϕ(ω)| ≤ | f (ω)||ϕ(ω)| (93)

for any σ ∈ (0, r] and almost all ω ∈ R, as well as the function Gσ(ω)ϕ(ω) is (pointwise,
almost everywhere) convergent to the function G(ω)ϕ(ω), we can refer to the Dominated
Convergence Theorem (see, e.g., (2.206) in [5]) and state that

lim
σ→0+

〈Gσ, ϕ〉 = lim
σ→0+

ˆ +∞

−∞
Gσ(ω)ϕ(ω)dω =

ˆ +∞

−∞
G(ω)ϕ(ω)dω = 〈G, ϕ〉. (94)

It means that the tempered distributions Gσ converge to G in S ′ topology. Thanks to
Theorem 7, we know that G(ω) is a causal distribution. �

Remark 1. If the condition (ii) of the above theorem holds for r = +∞ (i.e., the estimate |Gσ(ω)| ≤
| f (ω)| holds for any ω ∈ R and σ ∈ (0,+∞)), then G̃ ∈ H+, i.e., the polynomial growth
condition (1) holds.
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Furthermore, a more general version (with growth restrictions which are not necessar-
ily polynomial) can be formulated as follows:

Theorem 9 (see [66] Theorem 3.8). Let us suppose that G ∈ H(C+) satisfies the following:

(i) for each ρ0 > 0 function G restricted to the set {s ∈ C : <(s) > ρ0} is of the order/type
≤ (2, 0);

(ii) b = lim supy→+∞ y−1| ln(G(y)| is finite;
(iii) there exists R > 0 such that, for all ρ ∈ (0, R], the function Gρ(ω) = G(ρ + jω) satisfies

Gρ ∈ S ′.
Then there exists such a distribution g ∈ D′ that supp(g) ⊂ [−b,+∞) and G is the Laplace

transform of g.

The set of distributional theorems presented in this section can be collected as a distri-
butional version of the Titchmarsh theorem. It provides the conditions for the tempered
distribution f ∈ S ′ to be supported in [0,+∞), due to the properties of its Fourier transform
F = F ( f ). Let us mention that each of the tempered distributions F(ω) can be represented
as F(ω) = (jω)kG(ω), where G ∈ D′Lq (see the discussion following Definition 3.2 in [35]).

Theorem 10. Let us assume that the tempered distribution F ∈ S ′ and F = (jω)kG, where
G ∈ D′Lq . Then, if F fulfills one of the three conditions given below, it fulfills all of them:

(i) for the distribution f = F−1(F), there is supp( f ) ⊂ [0,+∞);
(ii) the distribution F is the boundary value in the S ′ topology of a function F̃(s) ∈ H+;
(iii) the following relation

F =
(jω)k

j
H(G) + Pk−1(ω) (95)

is satisfied for a certain polynomial Pk−1(ω) for the degree k− 1 at most.

Proof. The equivalence (i)⇔ (ii) is stated in Theorem 7 above (i.e., Theorem 2.7. in [35]).
As one can see, (iii) is equivalent to (87), which is equivalent to (i) by Theorem 4. �

5. Causality Evaluations
5.1. Application of Paley-Wiener Theorem

Example 1. As it has been mentioned in Section 4.1 above, the Paley–Wiener theorem is a useful
tool to detect the lack of causality. This is the case of frequency response of systems governed by
the power law with an exponent ν > 1. Let us take G(ω) as given by (73). One can see that
G(ω) ∈ L2(R) and

|ln|G(ω)|| = z
√

µγεβ

∣∣∣cos
(πν

2

)∣∣∣|ω|ν. (96)

Then one can calculate the integral

ˆ +∞

−∞

|ω|ν
1 + ω2 dω = +∞ (97)

for ν > 1 and ν 6= 3, 5, 7, ... (i.e., not being an odd positive integer). By the Paley–Wiener
theorem, the transform G(ω) is definitely not causal. The case of ν = 1 is obviously causal because
F−1(e−jz√µγεβω) = δ(t− z√µγεβ). The case of ν = 3, 5, 7... is analyzed in Example 23 below.

5.2. Calculations of Inverse Fourier Transformation

Example 2 (Dielectric model with constant permittivity (35)). This model implies that electric
susceptibility χ(ω) = εr − 1 is constant as well. This directly implies that

F−1(χ(ω))(t) = (εr − 1)δ(t) (98)
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is a causal distribution.

Example 3 (Dielectric model with ohmic losses (38)). This model is not valid for ω = 0; hence
it is extended in the distributional sense as follows:

ε(ω) = ε0εr + σ

(
p. v.

1
jω

+ πδ(ω)

)
. (99)

This directly implies that

F−1(ε(ω))(t) = ε0εrδ(t) + σu(t) (100)

is a causal distribution.

Example 4 (Debye relaxation model (45)). For this relaxation model, one can calculate the
inverse Fourier transformation as follows [47] Section 9.2.1:

F−1(χ(ω))(t) =
∆εr

τ
e−

t
τ u(t). (101)

For t<0, F−1(χ(ω))(t) = 0; hence (45) is a causal transform.

Example 5 (Lorentz model (46)). For this model, one can calculate the inverse Fourier transfor-
mation [47] Section 9.2.2. That is

χ(ω) =
∆εrω2

0
ω2

0 + 2jωγ−ω2
(102)

for ω0 > γ > 0. Then one obtains

F−1(χ(ω))(t) =
∆εrω2

0√
ω2

0 − γ2
e−γt sin

(√
ω2

0 − γ2 t
)

u(t). (103)

For t<0, F−1(χ(ω))(t) = 0; hence (46) is a causal transform.

Example 6 (Lorentz in high-frequency limit-model (47)). This model requires some explanation,
which is important from the formal mathematical perspective. The function χ(ω), given by (47), is
not locally integrable, so it may not be treated as a distribution. Hence we are not able to treat it as a
Fourier transform of any function or distribution (in other way, it is not possible to find the inverse
Fourier transformation thereof), which means that we are not able to formally ask whether it is a
causal distribution or not. The natural way to treat it as a distribution is to use the principal part
formalism (see, e.g., the discussion in Section 10.1 in [5]), which means that one can associate 1

ω2

with the distribution p. f. 1
ω2 given by〈

p. f.
1

ω2 , ϕ

〉
= lim

ε→0+

(ˆ −ε

−∞

ϕ(x)
x2 dx +

ˆ +∞

ε

ϕ(x)
x2 dx− 2ϕ(0)

ε

)
.

It might be shown that (in the distributional sense) Dp. v. 1
ω = −p. f. 1

ω2 . With this identifi-

cation, i.e., treating −ω2
p

ω2 as −ω2
pp. f. 1

ω2 , one can discuss the causality of this model. That is, the
inverse Fourier transform of

χ(ω) = −ω2
pp. f.

1
ω2 (104)

is given by

F−1(χ(ω))(t) =
ω2

p

2
tsgn(t). (105)
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For t<0, F−1(χ(ω))(t) 6= 0; hence (104) is not a causal transform. However, this observation
requires some comment as well (refer to the discussion about the formulas (19a), (19b) and (20)
in [67]). Let us notice that, for

f (t) = ω2
ptu(t), (106)

one obtains

F ( f )(ω) = −p. f.
ω2

p

ω2 + jω2
pπδ′(ω). (107)

Hence the model (47) can be causal if it is extended in the distributional sense as follows:

χ(ω) = −ω2
pp. f.

1
ω2 + jω2

pπδ′(ω). (108)

One is also referred to Example 20 given below, where causality of this model is discussed from
the perspective of the K–K relations.

Example 7 (Lorentz in high-frequency limit with static magnetic induction-model (48)).
One can notice that the formula (48) is representable as

χ(ω) = ∓
ω2

p

ωBω
±

ω2
p

ωB

1
ω±ωB

(109)

where ω 6= 0 and ω 6= ∓ωB. Because (109) includes singularities, we write it as

χ(ω) = ∓
ω2

p

ωB
p. v.

1
ω
±

ω2
p

ωB
p. v.

1
ω±ωB

. (110)

Then we use the following properties of the Fourier transformation:

F ( f (t)ejωBt) = F(ω−ωB)

F
(

j
2

sgn(t)
)
= p. v.

1
ω

.

Hence one obtains

F
(

j
2

sgn(t)e∓jωBt
)
=

1
ω±ωB

.

Finally, the inverse Fourier transformation of (110) can easily be calculated as

F−1(χ(ω))(t) = ∓
jω2

p

2ωB
sgn(t)±

jω2
p

2ωB
e∓jωBtsgn(t). (111)

However, (110) is not a causal transform. Furthermore, it is not a purely real function.
Therefore, in order to obtain a causal transform, we extend (48) with distributional terms which are
appropriate multiplicities of δ(ω) and δ(ω±ωB). That is

χ(ω) = ∓
jω2

p

ωB

(
p. v.

1
jω

+ πδ(ω)

)
±

jω2
p

ωB

(
p. v.

1
j(ω±ωB)

+ πδ(ω±ωB)

)
. (112)

Then one obtains in the time domain

F−1(χ(ω))(t) = ∓
jω2

p

ωB
u(t)±

jω2
p

ωB
e∓jωBtu(t). (113)

Although (113) is a causal function, its values are complex in the time domain. Hence it is not
a physical formula for any susceptibility.

One is also referred to Example 21 given below, where causality of this model is discussed from
the perspective of the K–K relations.
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Example 8 (Drude model (50)). This formula is undefined for ω ∈ {0, jγ}. Hence we extend it
in the distributional sense as follows:

χ(ω) = −p. v.
ω2

0
ω2 − jωγ

+
πω2

0
γ

δ(ω). (114)

For such a distributional extension, one can find the inverse Fourier transform (well known in
literature [47] Section 9.2.3)

F−1(χ(ω))(t) =
ω2

0
γ

(1− e−γt)u(t). (115)

Hence, for t < 0, F−1(χ(ω))(t) = 0, which means that (114) is a causal transform.

Example 9 (Djordjevic-Sarkar relationship for lossy dielectrics (41)). This model is undefined
for ω = 0; hence we extend it in the distributional sense as follows:

ε(ω) = ε0

1 +
∆ε′r

log10
ω2
ω1

ln ω2+jω
ω1+jω

ln10
+

σ

ε0

(
p. v.

1
jω

+ πδ(ω)

). (116)

Using the time-domain representation of the function (41) proposed in [6] (see formula (6)
therein with p = 0), one can calculate

ε(t) = ε0δ(t) + ε0

(
∆ε′r

log10(
ω2
ω1

) ln(10)
e−ω2t − e−ω1t

t
+

σ

ε0

)
u(t). (117)

It is a causal distribution.

5.3. Applications of Holomorphic Extensions

Example 10 (Cole-Cole model (51)). For α = 2, the transform χ(ω) = 1
1−τ2ω2 is not causal

because F−1(χ) = 1
2τ sgn(t) sin(t/τ). If one wants to obtain a causal model for α = 2, then it is

necessary to add the distributional terms as follows:

χ(ω) = p. v.
1

1− τ2ω2 −
jπ
2τ

(
δ

(
ω− 1

τ

)
− δ

(
ω +

1
τ

))
. (118)

Then one can calculate F−1(χ) = 1
2τ u(t) sin(t/τ). Let us define the extension

X(s) =
1

1 + (sτ)α
, α ∈ (0, 2). (119)

Let us denote θ = atan(ω
σ ) ∈ (−π

2 , π
2 ), where s = σ + jω and σ > 0. Because

sα = |s|αejαθ , (120)

one can notice that, for α ∈ (0, 2), there is αθ ∈ (−π, π), so X(s) is holomorphic in C+. Moreover,
the functions Xσ(ω) = X(σ + jω) are given by

Xσ(ω) =
1

1 + τα(σ + jω)α
= (121)

1 + τα(σ2 + ω2)α/2 cos(αθ)− jτα(σ2 + ω2)α/2 sin(αθ)(
1 + τα(σ2 + ω2)α/2 cos(αθ)

)2
+ τ2α(σ2 + ω2)α sin2(αθ)

.

One can notice that
lim

σ→0+
Xσ(ω) = χ(ω) (122)
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for all ω ∈ R. One can also notice that

|Xσ(ω)| = 1√
1 + 2τα(σ2 + ω2)α/2 cos(αθ) + τ2α(σ2 + ω2)α

. (123)

This expression can easily be estimated when α ∈ [0, 1], implying that cos(αθ) ≥ 0. Then
one obtains

|Xσ(ω)| ≤ 1. (124)

The last estimate shows that all the functions |Xσ(ω)| are dominated by the function f (ω) = 1.
Hence, by Theorem 8, the function χ(ω) is a causal transform.

For α ∈ (1, 2), one cannot be sure of the sign of cos(αθ). However, the derivations can be
continued with a slightly different estimate. Let us review the denominator of (123)√

1 + 2τα|s|α cos(αθ) + τ2α|s|2α =
√
(1− |τs|α)2 + 2|τs|α(1 + cos(αθ)) (125)

where |s| =
√

σ2 + ω2. For the fixed α ∈ (0, 2), one obtains |αθ| ≤ α π
2 < π. Hence the inequality

is obtained
1 + cos(αθ) ≥ cα > 0 (126)

for a certain positive constant cα. Two nonnegative terms are obtained in a denominator; hence one
can write an estimate

|Xσ(ω)| ≤ 1√
2cατ|s|α/2

. (127)

Let us notice that α/2 ∈ (0, 1), so the function f (ω) = 1√
2cατ|ω|α/2 is locally integrable and

is bounded for |ω| → +∞. Hence it can be considered as a tempered distribution. Moreover, the
inequality can be formulated as follows:

|Xσ(ω)| ≤ 1√
2cατ|σ2 + ω2|α/4

≤ f (ω). (128)

One can also notice that X(s) ∈ H+. It is definitely holomorphic in the right half-plane, so
it is enough to show that it can be estimated by a polynomial in half planes <s ≥ σ0 > 0. Let
s = σ + jω with σ ≥ σ0. Then one can estimate

|X(s)| ≤ 1√
2cατ|σ2 + ω2|α/4

≤ 1
√

2cατσα/2
0

(129)

by a constant. It proves that X(s) ∈ H+; hence all the assumptions of Theorem 8 are satisfied.
Therefore the Cole–Cole model (51) is causal for α ∈ (0, 2).

Example 11 (Cole-Davidson model (52)). One can easily notice that, for β = 1, the transform
χ(ω) = ∆εr

1+jωτ = F (u(t)∆εr
τ e−t/τ) is a causal transform.

In the case of β ∈ (0, 1), taking X(s) = ∆εr
(1+τs)β , as well as denoting s = σ + jω and

θ = atan
(

ωτ
1+στ

)
, one obtains

X(s) = X(σ + jω) =
∆εr

((1 + τσ)2 + ω2τ2)
β/2 e−jβθ . (130)

Therefore one can state that |X(s)| ≤ |∆εr| for any s ∈ C+. It means that both X ∈ H+ and
|Xσ(ω)| ≤ f (ω) for a locally integrable (actually constant) function f (ω) = |∆εr|. Hence, all the
assumptions of Theorem 8 are satisfied and the transform X(ω) is causal.
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Example 12 (Havriliak-Negami model (53)). This model can naturally be extended towards the
function X(s) = ∆εr

(1+(sτ)α)β , holomorphic in the right half-plane C+. Let us denote θ = atan(ω
σ ) ∈

(−π
2 , π

2 ), similarly as for the Cole–Cole model. Let us also denote s = σ + jω. It gives

|X(s)| = |∆εr|
(1 + 2τα|s|α cos(θα) + τ2α|s|2α)

β/2 ≤ |∆εr|, (131)

because cos(θα) ≥ 0. Hence one obtains the same estimate as in the previously considered models.
Similarly as before, by Theorem 8, one can state that the transform is causal.

Example 13 (Raicu model (54)). This model has natural holomorphic extension to C+, given by

X(s) =
∆

((sτ)γ + (sτ)α)β
. (132)

It leads to

|X(s)| = ∆

(|τs|2γ + 2|τs|γ+α cos(θ(γ− α)) + |τs|2α)
β/2 (133)

where s = σ + jω and θ = atan(ω
σ ) ∈ [−π

2 , π
2 ]. Because θ(γ− α) ∈ (−π

2 , π
2 ) and cos(θ(γ−

α)) ≥ 0, the following estimate is obtained

|X(s)| ≤ ∆
|s|γβ

(134)

(one can take the exponent αβ as well). In this model, one cannot use the trivial estimate by the
constant function equal to |∆|, so let us first prove that X(s) ∈ H+, i.e., it can be estimated
by a polynomial in any half plane <s ≥ σ0 > 0. If one assumes <s ≥ σ0, then also |s| ≥ σ0,
implying that

|X(s)| ≤ ∆
|s|γβ

≤ ∆

σ
γβ
0

. (135)

Hence it is estimated by a constant in any half-plane <s ≥ σ0 > 0.
Let us first observe that, if α = β = γ = 1, the Raicu model gives χ(ω) = ∆

j2ωτ . In this case,

F−1(χ(ω)) = ∆
4τ sgn(t) is not a causal function. However, if it is extended by the distributional

term, i.e., χ(ω) = ∆
j2ωτ + π∆

2τ δ(ω), then one obtains a causal transform F−1(χ(ω)) = ∆
4τ u(t).

Let us now assume that at least one of the constants α, β, γ belongs to [0, 1). Then let us assume
that γβ ∈ [0, 1) in the estimate (134). Let us take the locally integrable function f (ω) = 1

|ω|γβ .
This function can obviously be considered as a tempered distribution (it is bounded by a constant as
|ω| → +∞). Moreover, for any σ > 0, one can notice that

|Xσ(ω)| = |X(σ + jω)| ≤ ∆
|σ2 + ω2|γβ/2 ≤ f (ω). (136)

Hence, all the assumptions of Theorem 8 are satisfied and the transform χ(ω) given by (54) is
causal for all α, β, γ ∈ [0, 1], excluding the special case of α = β = γ = 1.

Example 14 (Lorentz model in FO generalisation (49)). This model has a natural holomorphic
extension given by

X(s) =

(
ωp
ω0

)2

1 + 2γ
(

s
ω0

)α
+
(

s
ω0

)2α
, α ∈ (0, 1]. (137)
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The open question is whether this extension is well-defined over C+. First, let us observe that
the quadratic equation

1 + 2γz + z2 = 0 (138)

with an unknown z =
(

s
ω0

)α
has the following solutions

z = −γ±
√

γ2 − 1. (139)

Hence, no matter if γ2 − 1 is positive or not, the real part of the solution z is negative. It
means that, for all z ∈ C+, the denominator of the function given by (137) is non-zero. If s ∈ C+,

then also z =
(

s
ω0

)α
∈ C+.

Hence the extension (137) is well-defined over the entire half-plane C+. Now we are going
to check the assumptions of Theorem 8. First, since the modulus of the denominator∣∣∣∣1 + 2γ

(
s

ω0

)α
+
(

s
ω0

)2α
∣∣∣∣ is bounded from below by some constant C > 0 in the closed right

half-plane C+, one can write the estimate

|Xσ(ω)| = |X(σ + jω)| ≤ 1
C

(
ωp

ω0

)2
= f (ω) (140)

for any σ ≥ 0 and ω ∈ R. Because the pointwise convergence Xσ(ω) = χ(ω) as σ → 0+ is
obvious, by Theorem 8, the function χ(ω) is a causal transform.

Now, let us take a look at the transfer functions which are derived for the formulation
of time-fractional electrodynamics based on the RS vector.

Example 15 (Plane-wave and spherical symmetries of solutions to diffusion-wave equation
formulated based on RS vector-models (78) and (79)). For the functions Gz and GR, given by
(78) and (79), respectively, the appropriate holomorphic extensions exist for β ∈ (0, 1), i.e.,

Gz(σ + jω) = Gz(s) = e−z√µβεβsβ
(141)

GR(σ + jω) = GR(s) =
1
R

e−R√µβεβsβ
. (142)

The assumptions of the Titchmarsh Theorem 3 are satisfied in the point (ii) for both functions;
hence it directly proves their causality.

Example 16 (Cylindrical symmetry of solution to diffusion-wave equation formulated
based on RS vector-model (80)). The function Gr, given by (80), does not belong to L2(R). It
stems from the asymptotics of the Bessel function J0 given by

J0(z) =

√
2

πz
cos
(

z− π

4

)
+ e|=z|O

(
|z|−3/2

)
(143)

valid for z ∈ C such that arg z ∈ (−π, π) as |z| → +∞ (see Formula 9.2.1 in [68]; more details
are given in Chapter VII in [69]). A natural holomorphic extension to the right half-plane for Gr(ω)
is given by

Gr(σ + jω) = Gr(s) = J0(jsβr
√

µβεβ). (144)

The behavior in infinity described by (143) does not allow one to state that the function
J0(jsβr√µβεβ) has a polynomial growth for <s ≤ ρ, and a positive ρ > 0. That is why, when
trying to prove the causality of the operator, one should refer to the stronger Theorem 9 and treat
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the function Gr(ω) as a tempered distribution. The condition (i) of above-mentioned Theorem 9 is
equivalent to the statement that, for any ε > 0, such C = C(ε, ρ0) > 0 exists that

ln |G(s)| ≤ ln C + ε|s|2. (145)

As one can see, due to the estimate (143), the modulus |Gr(s)| can be estimated by Ce|s|
β

as
|s| → +∞; hence the estimate (145) is satisfied. Moreover, taking y ∈ R, one can write

Gr(y) = J0(jyβ) (146)

and because of the trivial estimate

| ln(J0(jyβ))| ≤
∣∣∣ln(|J0(jyβ)|)

∣∣∣+ π (147)

one can focus on the estimate of |J0(jyβ)|. Looking at the terms on the right-hand side of (143), one
can see that the dominating term is of the order eA|s|β for some constant A > 0. Hence one obtains

lim sup
y→+∞

y−1| ln(Gr(y)| = 0. (148)

On the other hand, by the Hankel’s Asymptotic Expansions (see [68] Equation (9.2.5) and [69]
Section 7.3), the function J0(jsβr√µβεβ) is bounded as |s| → +∞. Hence, the function (144)
satisfies all the assumptions of Theorem 9, so it is also a causal transform.

5.4. Applications of K–K Relations

Example 17 (Westerlund relationship for FO capacitors [42,43] and power-law relationship
for porous media [45]-models (42) and (44)). Both Equations (42) and (44) are in the form

χ(ω) =
C

(jω)α
− 1 (149)

for certain constants C > 0 and α ∈ (0, 1). We are going to show that the function

F(ω) =
1

(jω)α
(150)

is a causal transform (subtracting 1 does not influence causality, since it is a transform of the Dirac
delta, i.e., a causal distribution). One can see that

(jω)−α = |ω|−α cos
(π

2
α
)
− j|ω|−α sin

(π

2
αsgn(ω)

)
.

Let us refer to Theorem 5 for k = 0. As F(ω) is locally integrable and satisfies growth
conditions in ±∞, it is sufficient to check the K–K relation (91), i.e.,

F =
1
j
H(F). (151)

Let us calculate the Hilbert transforms

H
(
|ω|−α cos

(π

2
α
))

=
cos(π

2 α)

π

 +∞

−∞

|τ|−α

ω− τ
dτ (152)

and

H
(
|ω|−α sin

(π

2
αsgn(ω)

))
=

sin(π
2 α)

π

 +∞

−∞

sgn(τ)|τ|−α

ω− τ
dτ. (153)
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Let us refer to a certain integral formula taken from (3.241.3) in [70] (valid for p < q)

 ∞

0

xp−1

1− xq dx =
π

q
cot

pπ

q
. (154)

Taking q = 2 and p = −α + 1 < 2, as well as applying the substitution x = τ/ω, one
obtains  ∞

0

|τ|−α

ω2 − τ2 dτ = ω−α−1
 ∞

0

x−α

1− x2 dx = ω−α−1 π

2
cot

(1− α)π

2
. (155)

Similarly, taking p = −α + 2 < 2, one obtains

 ∞

0

|τ|−α+1

ω2 − τ2 dτ = ω−α
 ∞

0

x−α+1

1− x2 dx = ω−α π

2
cot

(2− α)π

2
. (156)

Now, we take the formula (152) and convert it to the integral over (0,+∞)

 +∞

−∞

|τ|−α

ω− τ
dτ = 2ω

 +∞

0

τ−α

ω2 − τ2 dτ = (157)

2ω−α π

2
cot

(1− α)π

2
.

It means that

H
(
|ω|−α cos

(π

2
α
))

=
cos(π

2 α)

π
2ω−α π

2
cot

(1− α)π

2
= sin

(π

2
α
)

ω−α (158)

and the real parts on both sides of (151) coincide. Now, we take the formula (153) and convert it to
the integral over (0,+∞)

 +∞

−∞

sgn(τ)|τ|−α

ω− τ
dτ = 2

 +∞

0

τ−α+1

ω2 − τ2 dτ = (159)

2ω−α π

2
cot

(2− α)π

2
.

It means that

H
(
|ω|−α sin

(π

2
αsgn(ω)

))
=

sin(π
2 α)

π
2ω−α π

2
cot

(2− α)π

2
= − cos

(π

2
α
)

ω−α, (160)

which proves that the imaginary parts of (151) coincide as well. It completes the proof that all the
assumptions of Theorem 5 are satisfied; hence the transform (149) is causal. One should notice that
the solutions obtainable for various power-law media and time-fractional electrodynamics may not
be relativistically causal. That is, for the time-fractional diffusion-wave equation, the propagation
velocity of a disturbance is infinite, but its fundamental solution possesses a maximum which
disperses with a finite velocity [63].

Example 18. Let G(ω) = 1
jω . This is the function which is not locally integrable, so not in L2(R),

but can be identified with a distribution p. v. 1
jω , which is in DL2 . Then the K–K relations (87) can

be interpreted for k = 0 as

G =
1
jπ

G ∗ p. v.
1
ω

=
1
j
H(G). (161)

Let us observe that, by (20), there is

1
j
H(G) = −π

j2
δ(ω) = πδ(ω).
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Hence the relation (161) is not satisfied. On the other hand, when the modified transform is
taken

Gc(ω) = p. v.
1

jω
+ πδ(ω)

one can see that (referring to (19))

1
j
H(Gc) = πδ(ω) +

π

j
p. v.

π

ω
= Gc(ω).

However, it is well-known that F−1(G(ω)) = 1
2 sgn(t), which is not a causal function, and

F−1(Gc(ω)) = 1
2 sgn(t) + 1

2 = u(t), which is a causal function. This fact can seem to be slightly
paradoxical. It is because the transform p. v. 1

jω is closely related to the operator

f 7→
ˆ t

−∞
f (s)ds (162)

assigning an integrable function its primitive. It is natural to consider this operator as a causal
operator, as it converts causal integrable functions to causal locally integrable functions. The
problem is that multiplication by the function 1

jω does not always correspond to integration in the
time domain. Unfortunately, the time-domain integration operator, applied to functions from the
space L1(R) or L2(R) or to functions from the Schwartz space S , does not always give a function
from one of these spaces. The condition necessary to obtain the antiderivative operator

´ t
−∞ f (s)ds

acting to any of these spaces is that
´ +∞
−∞ f (s)ds = 0, and it is not always satisfied. Under this

assumption, one can write

F
(ˆ t

−∞
f (s)ds

)
=

1
jω

F(ω) (163)

where F(ω) = F ( f )(ω). This is the only case when one can associate the multiplication by the
function 1

jω with an integration operator. In the more general case of f ∈ L1(R) and
´ +∞
−∞ f (s)ds =

F(0) ∈ R (not necessarily equal to zero), one obtains

F
(ˆ t

−∞
f (s)ds

)
=

1
jω

F(ω) + πF(0)δ(ω). (164)

However, this formula does not work for all the tempered distributions. For instance, let us
take f (t) = u(t), i.e., the Heaviside step function. Then

g(t) =
ˆ t

−∞
f (s)ds = tu(t)

and F (g)(ω) = D(p. v. 1
jω ) + iπδ′(ω), where δ′ denotes the distributional derivative of the Dirac

delta, and D(·) denotes the distributional derivative. On the other hand, F(ω) = F ( f )(ω) =
p. v. 1

jω + πδ(ω) and none of the formulas (163), nor (164) can be correct (actually, these are
not even well defined, due to the fact that the multiplication of distributions is not well-defined
in general).

Example 19. Let us fix a ∈ R, and check when G(ω) = e−jaω is a causal transform. The answer
is obvious, because G(ω) = F (δ(t− a)), which is a causal distribution iff a ∈ [0,+∞). However,
we are going to look at the formula (87)

DkG =
1
jπ

G ∗ Dkp. v.
1
ω

(165)

for k = 1 (the value of k is selected as the minimal natural number, such that e−jaω

ωk ∈ D′L2 ).
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The left-hand side of the above inequality is obviously DG(ω) = −jae−jaω. On the other
hand, one can write the right-hand side as

1
jπ

G ∗ Dp. v.
1
ω

=
1
jπ

D
(

G ∗ p. v.
1
ω

)
. (166)

Let us now calculate the convolution for the test function ϕ ∈ DL2〈
e−jaω ∗ p. v.

1
ω

, ϕ

〉
=

ˆ +∞

−∞
e−jaω lim

ε→0+

(ˆ
|ξ|>ε

ϕ(ξ + ω)

ξ
dξ

)
dω = (167)

ˆ +∞

−∞
e−jaω lim

ε→0+

(ˆ +∞

ε

ϕ(ω + ξ)− ϕ(ω− ξ)

ξ
dξ

)
dω =

lim
ε→0+

ˆ +∞

ε

1
ξ

ˆ +∞

−∞
(ϕ(ω + ξ)− ϕ(ω− ξ))e−jaωdωdξ =

lim
ε→0+

ˆ +∞

ε

1
ξ

(ˆ +∞

−∞
ϕ(t)e−jatdt

)(
ejaξ − e−jaξ

)
dξ =

2j
(ˆ +∞

−∞
ϕ(t)e−jatdt

) ˆ +∞

0

sin(aξ)

ξ
dξ = jπsgn(a)

ˆ +∞

−∞
ϕ(t)e−jatdt = 〈jπsgn(a)e−jat, ϕ〉.

It means that 1
jπ G ∗ p. v. 1

ω = sgn(a)e−jaω and

1
jπ

D
(

G ∗ p. v.
1
ω

)
= −jasgn(a)e−jaω. (168)

Hence, both sides of (166) coincide iff asgn(a) = a, i.e., for a ∈ [0,+∞).

Having reviewed two abstract cases, let us look at some of the models from the
perspective of the K–K relations.

Example 20 (Lorentz in high-frequency limit-model (47)). Because we treat the function 1
ω2 as

a distribution p. f. 1
ω2 (see the discussion in Example 6), one can write

χ(ω) = ω2
pD
(

p. v.
1
ω

)
. (169)

It means that χ(ω) ∈ D′Lq as a derivative of the distribution from D′Lq . Then it means that
the K–K relations (87) should be taken for k = 0. Let us consider

1
j
H(χ(ω)) =

ω2
p

j
HD

(
p. v.

1
ω

)
=

ω2
p

j
DH

(
p. v.

1
ω

)
=

jπω2
pδ′(ω) 6= χ(ω).

In these derivations, the formulas (18) and (20) are used. Hence one can conclude that the
transform χ(ω) is not causal. However, as previously, one can notice that, by adding a singular
term to χ(ω), a causal transform is obtained. That is

χ(ω) = −p. f.
ω2

p

ω2 + jπω2
pδ′(ω) (170)

is a causal transform.
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Example 21 (Lorentz in high-frequency limit with static magnetic induction–model (48)).
As before, one can see that the formula (48) is representable as

χ(ω) = ∓
ω2

p

ωBω
±

ω2
p

ωB

1
ω±ωB

. (171)

Let us check the K–K relations for this function. Since χ(ω) ∈ D′L2 , one can refer to (87) for
k = 0; hence one can directly refer to (161). By the formulas (20) and (21), one can notice that

1
j
H(χ(ω)) =

1
j
H
(
∓

ω2
p

ωBω
±

ω2
p

ωB

1
ω±ωB

)
= jπ

(
∓

ω2
p

ωB
δ(ω)±

ω2
p

ωB
δ(ω±ωB)

)
6= χ(ω). (172)

It implies that χ(ω) is not a causal transform. However, it can be concluded that adding
singular terms in order to obtain

χ(ω) = ∓
ω2

p

ωBω
±

ω2
p

ωB

1
ω±ωB

+ jπ

(
∓

ω2
p

ωB
δ(ω)±

ω2
p

ωB
δ(ω±ωB)

)
(173)

results in a causal transform.

5.5. How to Prove Lack of Causality?

Obviously, one can prove that an appropriate holomorphic extension G̃(s) of the
transform G(ω) does not exist, but it does not look like an easy task. One should return to
the K–K relations instead, and prove that one of the equalities (83) or (84) (or in the case of
hermitian transforms (85) or (86)) is not satisfied in L2(R). Because the equalities are given
between the elements of L2(R) space, it means that violation of any of the conditions (83)
and (84) for the transform G(ω) in a single point does not prove that the transform is not
causal in general. Equations (83) and (84) are in L2 sense; hence such equalities are valid
almost everywhere. Fortunately, in certain cases, it occurs that the relations (83) and (84)
are valid for all ω ∈ R.

We now provide the theorem stated by Wood in 1929 ([71] Theorem I, see also [5]
Section 3.4.1):

Theorem 11 (Wood, [71] Theorem I). Assuming that f , g : R→ R are such functions that

(i) g(x) = 1
π

ffl +∞
−∞

f (t)
x−t dt;

(ii) the integrals
´ +∞

M
f (t)

t dt and
´ −M
−∞

f (t)
t dt exist for certain M > 0;

(iii) f is locally Hölder continuous of the order α ∈ (0, 1).

Then the function g is also locally Hölder continuous with an exponent α and

f (x) = − 1
π

 +∞

−∞

g(t)
x− t

dt (174)

holds for all x ∈ R.

Hence, for the Hölder continuous functions <G(ω) or =G(ω), with a behavior in ±∞
as required by Theorem 11, violation of any of the relations (83) or (84) in a single point
proves that they do not hold in L2(R). This attitude is used in the following example:

Example 22. In [26], the transfer function induced by the two-sided fractional derivative introduced
by Ortigueira and Machado (see [72,73]) is considered. It results in the following transfer function:

GΘ,ν(ω) = e
−sgn(cos( π

2 νΘ)) z
cµε

(jω)νej
π
2 ν(Θ−1)sgn(ω)

= e
−sgn(cos( π

2 νΘ)) z
cµε
|ω|νej

π
2 νΘsgn(ω)

. (175)
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Hence one obtains

<GΘ,ν(ω) = e
− z

cµε
| cos( π

2 νΘ)||ω|ν
cos
(

z
cµε
|ω|ν sin(

π

2
νΘ)

)
(176)

=GΘ,ν(ω) = e
− z

cµε
| cos( π

2 νΘ)||ω|ν
sin
(
−sgn(cos(

π

2
νΘ))

z
cµε
|ω|ν sin

(π

2
νΘsgn(ω)

))
. (177)

As it is shown in Lemma 2 in [26], for this transfer function, as well as for ν ∈ (0, 1) and
1
2 (Θ− 1)ν 6∈ Z, the following two equalities hold true:

<GΘ,ν(0) = 1 (178)

and (
1
π

 +∞

−∞

=GΘ,ν(τ)

ω− τ
dτ

)
ω=0

=
2

πν
atan

(
tan(

π

2
νΘ)

)
6= 1. (179)

Because both functions are locally Hölder continuous, the K–K relations hold true in L2(R)
iff they hold true pointwise. Hence, the transfer function GΘ,ν(ω) within the considered range of
parameters is not causal.

In the case of distributions, Theorem 11 can also be helpful. Let us first consider the
following example:

Example 23. Let us return to the case of ν = 3, 5, 7... mentioned in Example 1. We are going to
show that the transform

Gν(ω) = e−z√µγεβ(jω)ν
= cos(z

√
µγεβων)± j sin(z

√
µγεβων), (180)

where the sign depends on the parity of l ∈ N for ν = 2l + 1, is not causal. As one can see, the
distribution

Gν(ω)

jω
= ±

sin(z√µγεβων)

ω
− jp. v.

cos(z√µγεβων)

ω
(181)

belongs to D′L2 . Hence one can check if the distributional relation (89) is satisfied. Let us denote

f (ω) = <Gν(ω)

jω
= ±

sin(z√µγεβων)

ω

and

g(ω) = =Gν(ω)

jω
= p. v.

cos(z√µγεβων)

ω
.

In order to state that Gν(ω) is a causal transform, one needs to check that

Gν(ω) = ω(H( f ) + jH(g)). (182)

As one can see, the function f (ω) satisfies the assumptions of the Wood Theorem 11. Moreover,
it is an L2(R) function, so the distributional Hilbert transform can be replaced by a standard L2

transform. By the Wood Theorem 11, the real part of the right-hand side of (182), i.e., <Gν(ω), is a
locally Hölder function. It means that

cos(z
√

µγεβων) = ±ω(H( f )(ω))

for all ω ∈ R. This is obviously violated for ω = 0, and it proves that (89) is not satisfied. Hence
Gν(ω) is not causal.
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This example can be a good starting point for some general observations in the context
of Theorem 4, providing an easily verifiable necessary condition for causality.

Theorem 12. Let us assume that F = (jω)kG, where G ∈ D′Lq , and that (89) holds, i.e.,

F =
(jω)k

j
H(G).

Then, if the real (respectively imaginary) part of G is a locally Hölder continuous Lq function,
then its imaginary (respectively real) part must also be a locally Hölder continuous Lq function.

5.6. Causality Tests for Refractive Index

One can formulate the causality problem for media described by the refractive index
n = n(ω) ∈ C. From the point of view of Maxwell’s equations, the velocity of electromag-
netic wave is described by ε(ω) and µ(ω). Hence one obtains that n2(ω) = cµ(ω)ε(ω),
refer to (59). Let us assume that the dielectric-relaxation function χe(ω) satisfies the as-
sumptions of the Titchmarsh Theorem 3. Therefore, among others, it belongs to L2(R) and
is causal. Then χe(ω) has a holomorphic extension to the right half-plane, and the permittiv-
ity ε(ω) = ε0(1 + χe(ω)) also has a holomorphic extension to the complex right half-plane
(the same considerations are applicable to the permeability µ(ω) = µ0(1 + χm(ω))). One
should notice that this condition formulated for e−iωt settings implies that the considered
function is holomorphic in the upper half-plane. We should mention that the existence of
holomorphic extension is not a sufficient condition for causality, i.e., the behavior in ∞ is
important as well. In general, assuming that χe(ω) and χm(ω) belong to L2(R) does not
imply that the product χe(ω)χm(ω) ∈ L2(R). Hence, one has to be careful when deciding
whether n2(ω)− 1 is an L2(R) function. Similarly, if the holomorphic extensions χ̃e(s) and
χ̃m(s) satisfy the assumptions (ii) of Theorem 3, it does not mean that these assumptions
are satisfied by the product χ̃e(s)χ̃m(s). This means that we may not form conclusions
about causality based only on the existence of holomorphic extension. Some assumptions
concerning the behavior of the product χ̃e(σ + jω) · χ̃m(σ + jω) for a fixed σ > 0 and
|ω| → +∞ are needed as well. As proposed by Stockman [27], the K–K relations can be
written for the complex refractive index as

<n2(ω)− 1 =
2
π

 +∞

0

τ=n2(τ)

ω2 − τ2 dτ (183)

=n2(ω) = −2ω

π

 +∞

0

<n2(τ)− 1
ω2 − τ2 dτ. (184)

Although the assumption χe ∈ L2(R) does not imply that lim|ω|→+∞ χe(ω) exists, in
practical terms it is natural to assume that lim|ω|→+∞ χe(ω) = 0. Due to this assumption
regarding the electric susceptibility χe(ω), as well as the magnetic one, one obtains that
n2(ω) → 1 when ω → +∞ [74]. The usual physical justification behind this assumption
is that an incident, oscillating, electromagnetic field entering any medium stimulates the
charges in that medium to oscillate (light-matter interaction). However, for very high
frequencies of the incident field (ω → +∞) the charges of the medium cannot respond,
because they have a finite mass, hence their inertia. As a result, for those very high
frequencies, it is as if the field ’sees’ a vacuum (n2(ω)→ 1), because it effectively does not
interact with the medium at all.

From this additional assumption (i.e., lim|ω|→+∞ χe(ω) = 0, lim|ω|→+∞ χm(ω) = 0),
as well as the assumption that both functions χe and χm are bounded (it happens, e.g.,
when they are continuous), one can conclude that the product χe · χm belongs to L2(R). In
this case, one knows that n2(ω)− 1 belongs to L2(R). It allows one to say that the relations
(183) and (184) imply causality of the transform n2(ω) − 1 by the classical Titchmarsh
Theorem 3. From the formal perspective, the assumptions related to limits of the functions
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χe, χm as |ω| → +∞ and their boundedness can be relaxed (e.g., by saying that one of these
functions is any L2(R) function, and the other one is a bounded L2(R) function), but it is
far less natural and does not allow to conclude that n2(ω)→ 1 when ω → +∞.

A separate discussion is needed when the susceptibilities χe(ω) and χm(ω) are not
L2(R) functions, e.g., when they are tempered distributions. In this case, one has to be
careful when defining the product n2(ω) = c(1+χe(ω))(1+χm(ω)), as the product of two
distributions is not necessarily well-defined. One can surely define n2(ω) as a tempered
distribution when both χe(ω) and χm(ω) are represented by locally integrable functions,
which are bounded as |ω| → +∞ by some polynomial. In this case, the K–K relations can
be checked in the distributional sense with the use of Theorem 4, but it requires dividing
the function n2(ω) or n2(ω)− 1 by an appropriate power of (jω). Let us also notice that
the K–K relations for n2(ω) and n2(ω)− 1 can be different. In the case considered above,
when n2(ω)− 1 belongs to L2(R), there is no need to divide n2(ω)− 1 by any positive
power of (jω) (i.e., one may take k = 0 in the formula (87) or (88)). On the other hand,
n2(ω) is not the function in D′L2 , and in order to verify any of the Equations (87) or (88),
one should take k = 1.

In literature one can also find the K–K relations formulated for n(ω) =
√

n2(ω)

<n(ω)− 1 =
2
π

 +∞

0

τ=n(τ)
ω2 − τ2 dτ (185)

=n(ω) = −2ω

π

 +∞

0

<n(τ)− 1
ω2 − τ2 dτ. (186)

However, as it can be noticed in [27], the function n(s) =
√

n2(s) can be not holomor-
phic in the right half-plane s ∈ C, even if n2(s) is holomorphic. For instance, when n2(s)
approaches zero, then the derivative of its square root does not exist. It clearly shows that
causality of n(ω) is not necessarily equivalent to the case of n2(ω) causality. Apart from
the problem with being holomorphic in C+, there is also the problem of its behavior as
|ω| → +∞. If n(ω)− 1 ∈ L2(R), then it does not necessarily mean that n2(ω)− 1 ∈ L2(R).
Moreover, if n2(ω)− 1 ∈ L2(R), then it is not necessarily true that n(ω)− 1 ∈ L2(R). In
order to draw any causality conclusions from the relations (185) and (186) formulated for
n(ω), one should know that n(ω) − 1 belongs to L2(R). Despite these issues, the K–K
relation of the type (185) is successfully used for the interpretation of experimental results
in [75]. That is, the effect of a femtosecond-laser-induced electronic band-gap shift on the
refractive index is explicitly studied with the use of the K–K relations. Clearly, from this
relation, a change in the absorption described by =n(ω) curve in turn affects <n(ω). It is
worth mentioning that the K–K relations (185) and (186) formulated for n(ω) are valid for a
single mode propagation in waveguides (e.g., optical), for which one can write n(ω) = k/k0
where k0 = ω/c.

Let us now assume that n(ω)− 1 =
√

n2(ω)− 1 is causal (e.g., it is an L2(R) function
which satisfies (185) and (186)). Then, if N(t) = F−1(n − 1) is such a distribution that
the convolution N ∗ N exists, and if it is a tempered distribution (the convolution of two
causal distributions is causal as well), then (n(ω)− 1)2 = F (N) · F (N) = F (N ∗N) is also
causal. However, the opposite theorem is false in general. Nevertheless, if one knows that
the function n2(s) is holomorphic in C+ and it does not achieve 0, then n(s) is holomorphic
as well.

Still, one can prove that the passivity of media implies that n(ω) =
√

n2(ω) is
holomorphic in the right half-plane [76]. The problem of choice between n(ω) and n2(ω)
for applications in optics is debated in [77]. That is, the consideration of propagation
of optical pulses with the use of complex index of refraction is inconvenient in general.
Therefore, when calculating the wave vector, one can take either <

√
n2(ω) or

√
<n2(ω) as

a velocity of wave propagation. Whereas the difference between the two is negligible for
small losses, it is significant in other cases. The analysis of pulse propagation demonstrates
that the use of <

√
n2(ω) results in a wave vector different than that actually exhibited



Materials 2022, 15, 1536 33 of 37

by the propagating pulse. On the other hand, the definition
√
<n2(ω) always correctly

calculates the wave vector of pulse, hence it is preferred in optical investigations. Moreover,
for negative refraction media, when the sign of permittivity or permeability changes as a
frequency function, one should notice that the derivative of n(ω) does not exist when n(ω)
approaches zero. One should take all these issues into consideration when either the K–K
relations (183) and (184) or (185) and (186) are applied.

It is worth noticing that the K–K relations are also applicable—to a certain extent—in
nonlinear optics. That is, the response function in the time domain should also be causal for
nonlinear media. In general, nonlinear complex susceptibilities can have poles not only on
a half of the complex-frequency plane; however, there are cases when it happens. In such a
case, when holomorphic properties are available on a half of the complex-frequency plane,
the standard K–K relations (83) and (84) can be useful [78]. The review of nonlinear K–K
relations in optics and photonics is presented in [79], where it is shown that the nonlinear
dispersion relations have a common form that can be understood in terms of the linear K–K
relations (83) and (84) applied to a new electromagnetic system consisting of the material
and the perturbation of its parameters. As noticed in [80], the nonlinear K–K relations
are useful in optics and photonics to predict that an enhancement in the nonlinear optical
absorption for a specific wavelength usually leads to a decrease in the nonlinear optical
refraction associated with a considered material.

Equation (183) can be used to derive the condition of negative refraction with no (or
low) loss at the observation frequency [27], i.e.,

2
π

ˆ +∞

0

ε′′(τ)µ′(τ) + µ′′(τ)ε′(τ)

(τ2 −ω2)2 τ3dτ ≤ −1. (187)

It is derived assuming that, at and near the observation frequency ω, the material
is transparent (e.g., the losses are compensated by gain), which mathematically implies
that =[n2(ω)] = 0 and ∂=[n2(ω)]/∂ω = 0. Furthermore, it is assumed that the negative
refractive index is implied by the condition vp ·vg < 0, where vp and vg denote, respectively,
the phase and group velocity. Due to these limitations, the condition (187) is replaced in [28]
by the condition which does not require that =[n2(ω)] = 0 and ∂=[n2(ω)]/∂ω = 0 at the
observation frequency. The condition (187), obtained from the K–K relations, implies that
compensation of the optical losses or significant reduction, by any means (material or
structural) of the imaginary part of permittivity and permeability, can also change the
real parts of these quantities in such a way that the negative refraction disappears [27].
Concerning (183) and (187), care should be exercised for the case when both the real part of
permittivity ε′(ω) and the real part of permeability µ′(ω) are negative–simultaneously and
within the same frequency region, because in that case, although the product ε′(ω)µ′(ω)
is positive, one should nonetheless select the root with negative sign of the real part of√

n2(ω) and ensure that, in the absence of a gain mechanism the medium does remain
passive [81]. Further, one can notice that (187) stipulates that it is impossible to have a
loss-free or amplifying (ε′′(ω) ≤ 0, µ′′(ω) ≤ 0) medium with a negative refractive index
(ε′(ω) < 0, µ′(ω) < 0, n′(ω) = <n(ω) < 0) for all the frequencies–or else (187) would not
hold true. However, (187) does not preclude the possibility that such a medium exists within
a finite-bandwidth frequency region, outside which the product in the numerator in the
integral of (187) could make a sufficiently ’negative’ contribution, so that the overall (187)
still holds true. Indeed, such lossless negative-refractive-index media have been reported
in the past, both experimentally [82] and numerically [83–85].

5.7. Summary

The described analytical methods for causality evaluation of dielectric models of
photonic materials are summarised in Table 1.



Materials 2022, 15, 1536 34 of 37

Table 1. Summary of causality evaluation methods for photonic materials (IFT—inverse Fourier
transformation, KKR—K–K relations, HE—holomorfic extension, PWT—Paley-Wiener theorem).

Model Equation Method Example

dielectric with constant permittivity (35) IFT 2
dielectric with ohmic losses (38) IFT 3

Djordjevic-Sarkar for lossy dielectric [6,41] (41) IFT 9
Westerlund [42,43] (42) KKR 17

power-law for porous media [45] (44) KKR 17
generalized power-law [25] (65)–(66) PWT 1

Debye relaxation [46,47] (45) IFT 4
Lorentz [7,47] (46) IFT 5

Lorentz in high-frequency limit [7] (47) IFT, KKR 6, 20
Lorentz with static magnetic induction [7] (48) IFT 7

Lorentz in FO generalization [49] (49) HE 14
Drude [47] (50) IFT 8

Cole-Cole [46,50–52] (51) HE 10
Cole-Davidson [46,53] (52) HE 11

Havriliak-Negami [46,54,55] (53) HE 12
Raicu [46,56] (54) HE 13

6. Conclusions

In this article, a comprehensive analysis of mathematical techniques for causality eval-
uation of photonic materials is presented. It includes not only the approaches valid for the
L2 functions, i.e., those for which the Titchmarsh theorem can be useful, but also the func-
tions to which the distribution theory and the FO calculus have to be applied. We present a
set of theorems applicable for causality evaluations, as well as specific examples showing
how to use this mathematical machinery. Furthermore, the set of various distributional
theorems presented in literature is collected as the distributional version of the Titchmarsh
theorem, allowing us to evaluate causality of complicated electromagnetic systems on a
mathematically rigorous basis. In addition to the well-known K–K relations, we have also
outlined four further methodologies, namely application of the Paley–Wiener theorem,
calculation of the inverse Fourier transformation, identification of holomorphic extensions
to the right half-plane, and check of the K–K relations for the natural logarithm of a system’s
frequency response. The collection of these methodologies – otherwise scattered in a wide
range of pertinent literature – may prove useful for scientists and engineers investigating
causality problems in electrodynamics and optics.
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25. Gulgowski, J.; Stefański, T.P. Generalization of Kramers-Kronig relations for evaluation of causality in power-law media. Commun.

Nonlinear Sci. Numer. Simul. 2021, 95, 105664. doi:https://doi.org/10.1016/j.cnsns.2020.105664.
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34. Gulgowski, J.; Stefański, T.P. On Applications of Fractional Derivatives in Electromagnetic Theory. In Proceedings of the 2020

23rd International Conference on Microwave, Radar and Wireless Communications (MIKON), Warsaw, Poland, 5–8 October 2020;
pp. 1–4.

35. Beltrami, E.J.; Wohlers, M.R. Distributions and the Boundary Values of Analytic Functions; Academic Press: Cambridge, MA, USA,
1966.

36. Hörmnader, L. The Analysis of Linear Partial Differential Operators I; Springer: Berlin/Heidelberg, Germany, 2003.
37. Ferreira, J. Introduction to the Theory of Distributions; Pitman: London, UK, 1997.
38. Hoskins, R.; Pinto, S. Theories of Generalised Functions: Distributions, Ultradistributions and Other Generalised Functions; Woodhead

Publishing Limited: Cambridge, UK, 2011.
39. Gelfand I.M.; Shilov, G.E. Generalized Functions: Properties and Operations; Academic Press: New York, NY, USA, 1964.
40. Hu, B.Y. Kramers-Kronig in two lines. Am. J. Phys. 1989, 57, 821–821.

https://doi.org/10.2298/FUEE1402221D
https://doi.org/10.1088/0143-0807/33/6/1635
https://doi.org/https://doi.org/10.1016/j.cnsns.2020.105664
https://doi.org/10.3390/fractalfract5010010
https://doi.org/10.1103/PhysRevLett.98.177404
https://doi.org/10.1103/PhysRevLett.101.167401
https://doi.org/10.1088/1367-2630/12/12/123008
https://doi.org/10.1088/1367-2630/12/12/123008


Materials 2022, 15, 1536 36 of 37

41. Djordjevic, A.R.; Biljie, R.M.; Likar-Smiljanic, V.D.; Sarkar, T.K. Wideband frequency-domain characterization of FR-4 and
time-domain causality. IEEE Trans. Electromagn. Compat. 2001, 43, 662–667. https://doi.org/10.1109/15.974647.

42. Westerlund, S.; Ekstam, L. Capacitor theory. IEEE Trans. Dielectr. Electr. Insul. 1994, 1, 826–839.
43. Moreles, M.A.; Lainez, R. Mathematical modelling of fractional order circuit elements and bioimpedance applications. Commun.

Nonlinear Sci. Numer. Simul. 2017, 46, 81–88.
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