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We present a detailed analytical study of surface plasmon polaritons (SPPs) in generalized asymmetric slab
waveguides with a core of negative permittivity and permeability. Profiting from the duality principle, we
confine ourselves to the analysis of p-polarized (TM) SPP eigenmodes, which also occur in thin metallic films.
It is shown that the left-handed (LH) structures considered here support a richer variety of SPPs when
compared to their metallic counterparts. Depending on the refractive index distribution, the permittivity of each
medium and the thickness of the core, a total of 30 solutions to the involved characteristic equation are
identified in a unified manner and classified systematically. In order to identify conclusively all SPPs, we
follow an analytical methodology based directly on the solution constraints inherent in the associated transcen-
dental equation. This treatment reveals striking features of the formed SPP eigenmodes, such as the existence
of “supermodes” when no SPP is supported at one of the slab interfaces. Moreover, our study reveals the
opening of gaps in the SPP dispersion diagrams, occurrence of monomodal propagation for specific choices of
the material parameters, presence of SPPs with no cutoff thickness and coexistence of three eigenmodes, with
double mode-degeneracy points occurring twice. The eigenmodes with negative energy flux that give rise to
negative group velocity are identified via a closed-form expression for the time-averaged power flow P in the
guide. For each eigenmode, we examine the variation of P with the reduced slab thickness and discuss key
features of the effective index geometric dispersion diagram, most of which are unique to the generalized

structures studied herein.
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I. INTRODUCTION

Structures exhibiting negative permittivity and permeabil-
ity were first analyzed around 40 years ago by Veselago.! He
coined for their description the term “left-handed (LH) ma-
terials” to stress that the electric field E, the magnetic field
H, and the wave vector k of a monochromatic plane wave
inside such materials form a left-handed triplet. Veselago hy-
pothesized that a material of this kind could exist without
contradicting any of the fundamental laws of physics and he
showed that it would posses striking electromagnetic proper-
ties, such as inverse Doppler shift, antiparallel phase and
group velocities, backward power flow, and negative refrac-
tion. Critical issues, such as the actual occurrence of negative
refraction’ and the possibility to enhance the evanescent
waves,>* have been elucidated lately in a series of
theoretical,” numerical,® and experimental’ investigations.

How to construct these metamaterials was not known un-
til recently due to the absence of naturally occurring or arti-
ficial materials with negative magnetic permeability. Practi-
cal suggestions of how LH media could be realized
experimentally were first given in a series of works by Pen-
dry et al.,® who also predicted theoretically that these media
could be used for the creation of a “perfect lens.” After these
insights, the physical construction of a composite LH struc-
ture has been demonstrated by Shelby et al.,” and the possi-
bility of achieving subwavelength resolution of an object
with the same structures has been shown with further
experiments.'”

The perfect-lens action mentioned before relies critically
on the amplification of an object’s near field in a surface
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wave (SW)-like manner inside a LH slab. Due to momentum
mismatch, radiative waves cannot couple directly to the
formed SWs (or surface polaritons) at the interfaces of the
slab with positive-index media. Pendry, however, showed
that the near field of an object, which describes its finest
features and decays exponentially away form the source
(evanescent), can couple to an exponentially increasing field
inside the LH slab that decays similarly on the other side.
The whole field pattern resembles that of a surface polariton,
although the proof of its existence for the particular sym-
metrical structure considered by Pendry was not given in
Ref. 3, as well as in other more detailed analyses.!!

Generalizations of these studies were investigations of
asymmetric LH slab configurations for lensing,'? sensoring
and directional coupling!® applications. In both cases, the
role of the coupled surface polaritons at the two interfaces of
the slab waveguide was shown to be of crucial importance.
For the first class of applications, the asymmetry helped to
improve the limit imposed on the image resolution by the
losses of the core. For the second class it improved the am-
plification of the evanescent waves in the device-working
region, leading to enhanced performance.

It is the purpose of this paper to identify and classify all
surface plasmon'* polariton (SPP) eigenmodes supported by
generalized asymmetric slab heterostructures. To this end, a
rigorous analytical study is pursued that proves that a total of
30 solutions to the involved characteristic equation giving
the SPP eigenmodes can exist for all choices of the refractive
index distribution, constitutive parameters € and u, and the
thickness of the core. Such an approach is essential,' par-
ticularly for the investigation of asymmetric slab configura-
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tions, because the graphical methodologies that have been
proposed in the past for the modal analysis of LH
waveguides'? did not reveal all SPP eigenmodes. A suitably
modified form of the associated transcendental equation, de-
rived from macroscopic electrodynamics using the well-
known boundary conditions for the tangential electric and
magnetic-field components, obviates this limitation and al-
lows an analytical, unified treatment. We will confine our-
selves to the discussion of the geometric dispersion (SPP
effective index versus reduced slab thickness) since negative
material parameters occur near resonances; hence, all experi-
mental realizations of LH materials considered thus far were
for narrowbands. In addition, all transmission (lensing)
analyses of LH slab heterostructures, as well as investiga-
tions of asymmetric LH (Ref. 13) and metallic'>'® films in
the past, involved mainly monochromatic waves. All the im-
portant modal features, such as the number and classification
of modes, number and kind of cutoffs, field enhancement,
phase reversal, and possible double mode-degeneracy occur-
rence, can be derived in a clear and conclusive way follow-
ing this methodology.

The organization of the paper is the following. Section II
will make some introductory remarks regarding SPP waves
at a single interface between a right-handed (RH) and a LH
material. Emphasis is given on the conditions for the exis-
tence of such waves, as these are used later when the effects
of retardation are taken into account. Section III is devoted to
the discussion of the SPP eigenmodes supported by an asym-
metric slab waveguide with a negative refractive index core.
Following a macroscopic analysis, the LH waveguide is
treated as a boundary value problem. Special solutions of the
scalar wave equation are sought, subject to boundary condi-
tions, to obtain the characteristic equation of the SPP eigen-
modes. From the restrictions inherent in this equation, which
depend on the refractive index distribution, we identify all
supported SPP eigenmodes and classify them as forward or
backward propagating via a closed-form expression for the
total power flow P in the guide. Finally, Sec. IV summarizes
the paper presenting the main conclusions of the present
study.

II. SURFACE PLASMON POLARITONS AT A PLANE
LH/RH INTERFACE

The negative permittivity and permeability of a left-
handed medium (LHM) allows the existence of surface
waves (SWs), also called surface polaritons (SPs), at the in-
terface with a right-handed medium (RHM).!” In order to
investigate these solutions and derive the conditions for their
existence, we consider the geometry illustrated in Fig. 1.
Here both media are considered to be semi-infinite,
homogeneous'! and isotropic.'® Medium 1 has negative rela-
tive permittivity &,;=—¢,;,<0 and permeability u, =-w,,
<0, whereas in medium 2 we assume &,,>0 and wu,,>0.
The coordinate axes are chosen so that the z axis is directed
along the SP propagation and the x axis is perpendicular to
the media interface.

In what follows, we will examine p-polarized (TM) SP
waves that exist due to the change in the sign of the permit-
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g,>0
u,>0

FIG. 1. Isolated interface between a left-handed material (LHM)
and a right-handed material (RHM). The change in sign of the per-
mittivity allows a p-polarized surface polariton (SP) to exist at this
interface.

tivities. Analogous results can be obtained for s-polarized
(TE) waves, following a dual analysis. The following rela-
tions describe the field components tangential to the interface
of the media (in SI units):

2

d°H
_22 + (Srlu‘rkg_IBZ)Hy=O’ (la)
dx
i 0H
E.=--L22 (1b)
’ we 0x

Inside the LH medium, Eq. (1a) becomes

d°H
d_xzx - (Bz - Srlpﬂr]ka)Hy =0 (2)

where S is the longitudinal propagation constant of the SP
wave. Assuming %> max{e,; ,u,1,kq. €240k}, the H,-field
component in medium 1 will be of the form H,=Ae*", where

K= \/Bz—srlp,u,,lpk(z) and A is an arbitrary constant. For a
bound wave to be supported by the interface, we seek H,
solutions that decay exponentially as x — +o. Therefore, we
seek a solution for medium 2 of the form H,=Ce™. By
direct substitution of this expression into the scalar wave
equation for H, in Eq. (1a) we obtain y=\S>—e,ou,qk;.

Applying the boundary conditions associated with the tan-
gential H, and E, fields at x=0, yields a characteristic or
eigenvalue equation for the formed SP at the plane interface
that allows us to determine the conditions for its existence. In
terms of the eigenmode’s effective index n.4=[B/ky, the
aforementioned equation takes the form

1/2
_ 8r1p8r2(/'(‘r1p£r2 - lu‘r28r1p) 3
Negr = B B . (3)
€~ &rp
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n;>0 n,>0
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FIG. 2. Schematic representation of the asymmetric left-handed
slab heterostructure. The core is a medium with negative refractive
index n; and thickness 2a. Also shown is a possible field pattern of
a supported SP and the direction of the longitudinal propagation
constant f3.

It is convenient for the subsequent discussions to rewrite
Eq. (3) using the ratios of the permittivities, p,=¢,5/€,,, and
permeabilities, p, =,/ i1, of the two media'”

pe(pe—p,) |
neff:|nl||:#:| . 4)

€

Since p, is a positive quantity, we conclude from Eq. (4)
that an SP at a LH/RH interface can only exist if

{pe>1 and p.>p,} (5a)

or

{p. <1

Before closing this section, we wish to emphasize that
these restrictions concern uncoupled (“unretarded”) SPs
existing at isolated LH/RH interfaces. We demonstrate in
Sec. III that an SP eigenmode violating these constraints may
exist if the interface that supports it, is brought sufficiently
close to another LH/RH interface creating a “supermode,”
which is not obliged to obey the two different cases in

Eq. (5).

and p, < p#}. (5b)

III. SURFACE PLASMON POLARITONS IN ASYMMETRIC
LH SLAB WAVEGUIDES

In the following we study surface plasmon polaritons
propagating along a homogeneous isotropic slab of negative
permittivity and permeability bounded by two different me-
dia with positive refractive indices, as illustrated in Fig. 2.
The SPP eigenmodes in the slab waveguide will be travelling
along the z direction. There is no variation in the guide ge-
ometry in the z direction and by symmetry no variation in the
field distributions in the y direction. The thickness of the slab
is 2« and in all the subsequent discussions we assume, with-
out loss of generality, that n,>ns.

In the analysis of planar dielectric waveguides,'® the so-
lution ansatz to the master equation is a monochromatic
plane wave of frequency w with a functional expression that
can be symbolically written as

W (x,z,t) = D(x)e Pl (6)

where W represents an electric or magnetic field component,
@ describes its amplitude in the x axis, and B is the longitu-
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dinal component of the wave vector k in the slab. For TM
SPPs, where the three existing field components are given by
Eq. (1), we are seeking H,-solutions in the three media, of
the form

Ae’¥, x<0
H,(x) =B cosh(kx) + Csinh(kx), 0<x<2a (7)
De_(x_za)yz, x=2a,
1 = - = —_
with K=\ 2 Srlplurlpk(z)’ Y= Vﬁz 8r21u‘r2k(2)’ and Y3

=\ B> ~&,3,3ks, as in Sec. IL. Similarly to the single inter-
face case we require nqi;>max{|n;|,n,,ns}, from which we
make the ansatz to Eq. (7). By matching the tangential com-
ponents at x=0 and x=2¢«, we find

B=A, (8a)

c=_m¥y (8b)
8,3 K

Er .
D = | cosh(Qak) - —lﬂﬁsmh@ak) A, (8¢c)
€3 K
and the following SPP characteristic equation is obtained:

8r1pK(8r372 +£,073)

2, .2 :
€283K T €,1,7273

tanh(2ak) = 9)

As in classical fiber theory,'? it is advantageous to intro-
duce the following reduced, dimensionless, modal param-
eters:

_—
U=ak= akO\"nesz_ EripMrips (103)
W, = ay, = ako\ng— 8,042, (10b)
W3 = ays = ako\nig— 343 (10¢)
With these definitions, Eq. (9) takes the form
e,1,U(e Wy + €, W
tanh(2U) = 2 ( 22 o 3). (11)
8r28r3[] + SrlpWZWS

In order to determine the power propagation direction, we
calculate the time-averaged power flow in the slab hetero-
structure, obtained by the integral over the guide’s cross sec-
tion of the z component of the complex Poynting vector (S.)

o] 1 ee] ;
P:f Szdzzj Re(E X H), dx. (12)

For p-polarized SPP eigenmodes, S, is given by
B

2wege;

1.
S.=~HJE,=

5 |HJ* (i=1,2,3). (13)

From Eqgs. (7)—(9), we find the power P; confined in each

region to be
A%\ 1
()
4(1)80 8rlp 0.3

(14a)
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TABLE 1. Summary of the discussion for the case |n;|>n,>n;.

ag.>1, p,>1

pe> 0 pe €A

g.>1, p.<1

o<1, p,>1 o<1, p,=<1

First: forward, First: backward,

First: forward,

First: forward, First: forward,

2 cutoffs low cutoff 2 cutoffs 2 cutoffs upper cutoff
Second: backward, Second: backward, Second: backward, Second: backward,

low cutoff no cutoff low cutoff low cutoff

Third: backward,

no cutoff

A? K-
P1=—< >£ & ’yg|:2a+ P2 :Y3

+ b
dwey/ &, O'ik2 pzk2 - y% 0'§K2 - y%
(14b)
A\ B pok -
P2= iy ) N (]40)
4wey/ €1,P: 72 0% Pek — 7%
where o,=¢,3/€,, and p,=¢,,/¢€,,,. From Eq. (14) we can

derive a closed-form expression for the total power P
=E?:1Pi in terms of the dimensionless parameters defined in
Eq. (10) and the reduced slab thickness ak;

_ ( A2 ) W% — UiUz (U2 + 8;’].mu“rlp(alko)z)l/2
tot —

4we o‘iU2 €r1p
UVP-W2 o, UP-W3
x| 24+ L= > 222+—€ > 232 . (15)
Wsz—psU W3W3—0'3U

The central task at this point is the determination of the
solutions to Eq. (11). Their existence is identified following
an analytical methodology. In what follows, we discuss the
features and dependence of these solutions on the thickness
of the inner layer, for the various cases of the refractive
index distribution. A brief summary of the results for each
case is found in Tables I-III.

A. Case I: |nq|>n,>n;
For this case, we start by defining the following two

V-parameters:

VZ(ak()) = (Wg - U2)1/2 = akO(SrlpIu’rlp - 8r2/~l’r2)1/2,
(16a)

V3(0[k0) = (W§ - U2)1/2 = a/kO(srlplu“rlp - 8r3/"’r3)1/27
(16b)

where it is seen that the usual notation of the V number
found in fiber theory'® has been properly modified to accom-
modate the changes in the refractive index distribution and
that both parameters are functions of ak,. We also introduce
the following ratios:

U / 2_1 172
blne) = — = {—("eff m) } : (17)
VZ l_papy,
v |- 12
Vs (ﬂ) ’ (18)
V2 1 _pap,u,

obeying the restrictions 5>0 and 1> 1, where p,=u,2/ 1,1,
and 0,=p,3/ 1,1, Note that similar ratios to b and ¢ are
utilized in the analysis of conventional slab waveguides to
denote the “normalized guide index” and the “asymmetry
measure,” respectively,” and that b is a function of the SPP
eigenmode’s effective index.

For the explicit acquisition of the dispersion diagrams and
the derivation of the analytical restrictions inherent in
Eq. (11), a common strategy is to produce an inverted ver-
sion of the associated characteristic equation.'>?° First, we
note from Egs. (16) and (17) that U=bV,, W,=V,(b*+1)?
and W;=V,(b*>+1*)"2. With these observations, Eq. (11) can
be rewritten in the form

VZ:LIH{W], (19)

4 | (X=1)(Y=1)

where X(b)=0.b/(b>+1*)"? and Y(b)=pb/(b*+1)"2. Since
V,, given in Eq. (16a), is a real number, we immediately see
that Eq. (19) only has solutions, when the argument of the
logarithm is positive, i.e., for

TABLE II. Summary of the discussion for the case n,>n;>|n|.

O’EBI,pEBI 0521,P5<1 0'8<17p5>1

g, <1, p, <1

ps €A

Pe € A’ psp,u,> ((TE(T/_L—O'i)/(]—O'i)

First: forward,
low cutoff

First: forward,
low cutoff

First: forward,
2 cutoffs
Second: backward,
upper cutoff

First: forward,
low cutoff
Second: forward,
no cutoff

First: forward,
no cutoff

First: forward,
low cutoff
Second: forward,
no cutoff
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{X>1 and Y>1}, (20a)

or:

{0<X<1 and 0O<Y<I1}. (20b)

We now examine, in detail, the consequences of these
restrictions on X(b) and Y(b), based on which the existing
SPP eigenmodes are rigorously identified. In particular, we
derive analytically the allowable range of values that b,
hence the eigenmodes’ effective index, can take. In pursuing
this analysis, we find that it is necessary to distinguish be-
tween the following four situations that describe the possible
variations in the permittivity distribution. In all four of them,
it is implied that 0,0, < p,p, <1 from the initial assumption
|| >ny>ns.

The first situation occurs for {o,>1 and p,>1}. When
p.>> 0., inspection of Eq. (20) results in the allowable values
for b; that is 0<b<<b; or b>b,, where

( 1 )1/2
b= , 21
1 Pi—l ( )

and

1-
by= [ 7o

}1/2
. 22
(a2 = 1)(1 = pep,) (22

The corresponding geometric dispersion diagram is shown in
Fig. 3(a), and the variation of the normalized power P
=P/ (|P,|+|P,|+|P5|) (Ref. 11) with the reduced slab thick-
ness for each solution is given in Fig. 3(b). Three SPP eigen-
modes exist in this case. The first has a lower cutoff and an
upper one at b=0, is forward propagating, having positive
total power P, and the field intensity has a node in the core
region. It should be noted that modes with oscillating field
inside the core can also exist in high-index guiding LH
structures.!! Therefore, all SPP cutoff points corresponding
to b=0 are not necessarily “real” cutoffs where no electro-
magnetic mode (SPP or oscillatory) can exist any more, but a
transition point from SPP mode to oscillatory mode. It is
worth pointing out that for all SPPs considered in case I this
continuous transformation is into the first oscillating mode.
At the lower cutoff point, the previous SPP solution de-
generates into the second eigenmode. This SPP has a low
cutoff and no upper cutoff and is backward propagating, hav-
ing negative energy velocity and, since the dielectric media
are nonabsorbing, negative group velocity, as well.?! After a
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finite gap, a third eigenmode appears, which has no cutoff
and is also backward propagating having negative P for ev-
ery core thickness. The corresponding fields have no node in
the core region.

It is interesting to discuss the behavior of these solutions
in the extreme cases of b— b, and b— b,. First, by letting b
become equal to b, we recover asymptotically Eq. (4),
which is the SPP characteristic equation at the 1-2 media
interface. Such result is expected, since from Egs. (16a) and
(19) and from Fig. 3(a) we note that for b—b;, aky— ,
hence the two slab interfaces decouple and the SPP at an
isolated interface should be recovered. For a relatively large
value of ak, the result of plotting this SPP eigenmode is
shown in the middle left inset of Fig. 3(a), reflecting the
previous conclusions. Then, assuming that b=b,, we obtain

12
Nefp3 = |”1|{%(;—SUM_)] , (23)
=1
and the SPP eigenmode at the 1-3 interface is recovered
asymptotically, shown in the top inset.

When p,<o,, it proves necessary to examine the inter-
vals that to which the ratio p, belongs. If p, € A, where A
={(ps,l < Pe < ps,2) N (ps > 1)} and Pe,15Ps 2 AC the two roots
of the polynomial

H(pg) = (1 - O-so-,u)pg + P,L(Uﬁ - l)ps - [(1 - 0-30-,41.)
+(o-1)], (24)

it is b, >b,, and we see from Fig. 3(c) that two eigenmodes
exist, both of which are backward propagating. The first SPP
has only a lower cutoff at b=0 and, contrary to the previous
case, it concentrates asymptotically at the 1-3 interface while
exhibiting a phase reversal. The second (upper) SPP shows
no cutoff, has positive H,-field component throughout the
slab and concentrates at the 1-2 media interface for large
core thickness. For p,eA’, where A'={[(p,<p. 1)U (p,
>p,2)]N(p,>1)}, we have b;<b, and the results of the
analysis hold the same as in the case p, > o, apart from the
disappearance of the first SPP eigenmode that was forward
propagating.

The second situation occurs for {o,>1 and p.< 1}. From
the conditions in Eq. (20), we find that b ranges from 0 to b,
and the corresponding dispersion diagram is illustrated in
Fig. 3(e). In this case two eigenmodes are shown to exist; for
both, the H, component has a node in the core region. The
first has a low cutoff and an upper one occurring at b=0, and

TABLE III. Summary of the discussion for the case n,>|n;|>n;.

g.>1,p.=1

g.>1, p.<1 o<1, p. <1

pepp<(0r—0.0,)(02=1) p.p,>(0r-0.0,)/(0o~1) p,eA

p.eA’ pepp> (0o 0p0,) /(02— 1)

First: forward, First: backward,
2 cutoffs low cutoff

First: backward,
no cutoff

First: forward, First: forward,
2 cutoffs no cutoff

First: forward,
low cutoff
Second: backward, Second: forward, Second: backward,
upper cutoff low cutoff low cutoff

Second: backward,
2 cutoffs

Third: forward,
low cutoff

085104-5



TSAKMAKIDIS et al.

PHYSICAL REVIEW B 73, 085104 (2006)

44F 1.695 g T T T T T T a
40
:E 36 :‘% 1.612 :5 26} -
5 32t 5 159 3 %4 1
2 28 E 2 22] .
= = 1586 =
2 247 2 £ 20
15} B Q SUr T
g 20F E 1.573 g
- o w 18f- .
16+ 1.560 )
[ 16} .
lee 1.547
0.8 1 1 n 1 1 ! ) i A i i i i i 1.4 L L 1 ! 1 1
0.36 0.54 0.72 0.90 1.08 1.26 1.44 1.6 27 36 45 54 63 72 841 0.88 096 1.04 112 120 1.28 1.36
(a) Reduced slab thickness ak, (c) Reduced slab thickness ok (e) Reduced slab thickness ak;
0.28F ] _— r T T T T T T
0.32 Q
= . s 015}
2 S 036 2
g g q;, 0.10
s g % 8 oos|
3 g ou 3
T = 2 oo00f
E ©
£ E 048 E
z Z g -0.05
052
054 072 090 1.08 126 144 162 27 36 45 54 63 72 81 0.88 096 1.04 112 120 128 1.36
(b) Reduced slab thickness ak, (d) Reduced slab thickness ak, (f) Reduced slab thickness ak,
T T T T T T T 5.0
462t o
a20f ] 45r !
& £
<® 378} ¢ degeneracy ] <® 40F 4
é x
S 336} - $ 35 ,
£ £
< 294t 4 2 30f 1
© ©
% 2521 7 L 25¢ g
210} 1 =
20} -
1.68 4
I 1 1 1 L L 1 151 1 1 L 1 1 1 1 L
045 050 0.55 060 065 0.70 0.75 03 06 09 12 15 18 21 24
(9 Reduced slab thickness ak, (i) Reduced slab thickness ok,
020 j 0.2240 | .
% 0.20} . o
3 2 02208 .
= =
5 015+ b =
1 [
3 S 02176} -
g o0} . g
B ? 02144} §
S 005| E 2
£ £
g 0.00 [ ¢ degeneracy e S 02112} 1
b4 Z
-0.05} 2 0.2080} |
045 050 055 060 065 070 0.75 03 06 08 12 15 18 21 24
(h) Reduced slab thickness ok, () Reduced slab thickness ak

FIG. 3. Variation of an SP eigenmode’s effective index nqg and normalized power P with the reduced slab thickness ak in a generalized
LH slab waveguide (case I: |n;|>n,>n;, as indicated by the shaded background). In all cases it is assumed that £,=2, u,=1.2. (a), (b) n
and P variation for o,=1.1, 5,=0.5, p,=1.15, p,=0.6. (c), (d) Variations for 0,=1.8, 0,=0.5, p,=1.55, p,=0.6. (), (f) Variations for
o,=1.1, 5,=05, p,=0.95, p,=0.8. (g), (h) Variations for ¢,=0.8, 0,=0.2, p,=1.05, p,=0.2. (i), (j) Variations for 0,=0.8, o0,=1, p,

=09, p,=1.1.

is forward propagating. The second SPP has only a low cut-
off and it concentrates asymptotically at the 1-3 interface. As
in all the encountered cases that contain degeneracy, the total
power P at this point equals zero, corresponding to zero

group velocity. Waves with this feature are of great practical
interest for optical communication and data storage
applications.?? It should be noted that, for the particular val-
ues of the permittivity and permeability ratios shown in
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Fig. 3(e), the 1-2 single interface does not support an SPP
because the constraints in Eq. (5) are violated. However, the
coupled SPPs at the interfaces of the slab overcome this limi-
tation, creating the two new SPP “supermodes” for relatively
large slab thickness.

In the third case, which exists for {o,<1 and p,> 1}, it is
found that the range of values for b is between 0 and b,. The
variation of the eigenmodes’ effective index and power with
the reduced guide thickness is shown in Figs. 3(g) and 3(h).
The conclusions for the supported SPPs are similar with
those in the previous case, with the difference that the second
(upper) eigenmode concentrates asymptotically at the 1-2 in-
terface while taking negative values. In this case also, it is
the 1-3 interface that violates the SPP existence conditions
and, if isolated, would not support a bound wave.

The final situation occurs for {o,<1 and p,<1}. In this
case there are no additional restrictions on b other than b
>0. From Figs. 3(i) and 3(j) we see that only one SPP eigen-
mode exists, which is forward propagating with only a
higher cutoff at »=0 and has opposite sign at the two inter-
faces of the slab.

B. Case II: n2>n3>|n1|
For the refractive index distribution considered here, we
use the following definitions for the V numbers:
2
V(aky) = (Uz - Wz)l/z = aky(&,o,0 — 8r1er1p)1/2’
(25a)

V3(ak0) = (Uz - W%)l/Z = akO(sl‘Slu“B - 8r1plu“rlp)1/27
(25b)
with p.p,>o0.0,>1 used throughout the following analy-

sis. Then, the previously introduced b and ¢ parameters take
the form

U / 2 _ 1 1/2
blne) = — = [—("e“ m) ] : (26)
VZ pspM_ 1
v _1\2
Vs (Hﬂ_> ’ @7
V2 psp,u,_ 1

obeying the restrictions »>1 and #<<1. The general form of
Eq. (19) and the solution conditions of Eq. (20) remain the
same, but now we have W,=V,(b*—1)"2, W3=V,(b*-1*)'">,
X(b)=0,b!(b*~>)V? and Y(b)=p,b/(b*~1)"2. By letting
X(b) and Y(b) fulfill these conditions, we again find that four
distinct situations arise depending on the permittivity profile.

The first situation occurs for {o,= 1 and p.= 1}, and does
not contain further restrictions on b. The eigenmodes’ effec-
tive index and P dispersion diagrams are shown in Figs. 4(a)
and 4(b). We see that two SPPs exist; both have no node in
the middle layer. The first, which is forward propagating, has
a lower cutoff at =1 and also an upper cutoff point, where
it degenerates into the second eigenmode. The second SPP
has only a high cutoff and is backward propagating having
negative total power P.

The second situation occurs for {o,=1 and p, <1}, and it
can be shown that b is in the range 1<b<b;, where now
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1 172
b, =< 2) . (28)
l_ps

In this case, a single SPP eigenmode is shown to exist, hav-
ing only a low cutoff at b=1. This SPP is forward propagat-
ing and concentrates at the 1-2 media interface for large core
thickness, as illustrated in the inset of Fig. 4(c). This result is
also verified by letting b=b;, where we obtain the SPP char-
acteristic Eq. (4).

The third case exists for {o,<1 and p,=1}, and it is
found that b ranges from 1 to b,, where now

{ og.o,—1 }1/2
b, = La , 29
L= (pep,—1) (29)

with the constraint p,p, < (asaﬂ—oi)/(l —07). The variation
of the effective index and total power with the reduced guide
thickness are shown in Figs. 4(e) and 4(f). The conclusions
are similar with the previous case, with the difference that
the supported SPP concentrates asymptotically at the 1-3 in-
terface. For the values of p, and p, shown in Fig. 4(e), the
isolated 1-2 interface would not support an SPP.

The final situation occurs for {o,<1 and p,<I}. If
pspM<(0'8(r’u—o€)/(]—o€), it proves necessary to examine
the intervals that the ratio p, belongs to. When p, € A, with
A={[(p£ < ps,l) U (Ps > pa,Z)] N (0 < Pe < 1)} and Pe,15Pe2 be-
ing the two roots of the polynomial

M(p,) = (0,0, = )p; + pull = )p, = [(1 = )
+ (.0, = D], (30)

it is b, > b,, and we see from Fig. 4(g) that two eigenmodes
exist, both of which are forward propagating. The first SPP
has only a low cutoff at b=1 and concentrates asymptotically
at the 1-3 interface; the corresponding field intensity has no
node in the core region. The second SPP has no cutoff, ex-
hibits phase reversal and concentrates at the 1-2 media inter-
face for large core thickness. For p, € A’, where A"={(p,
<pe<pe2)N(0<p,<1)}, we have b;<b, and again two
SPP eigenmodes are shown to exist in Figs. 4(i) and 4(j). The
first has positive H,-field amplitude across the slab. Com-
pared to the previous two eigenmodes, the cutoff character-
istics remain the same, but the order of the interfaces to
which these SPPs concentrate is reversed. Finally, if p.p,
>(0.0,~ oi)/(l - o‘i), the constraint > b, becomes manda-
tory. The dispersion diagrams for this case are shown in
Figs. 4(k) and 4(1). We see that a single SPP exists, which
shows no cutoff, exhibits phase reversal, concentrates
asymptotically at the 1-2 interface and has positive total
power for all core thicknesses.

C. Case III: ny>|nq|>n;

To reflect the refractive index distribution considered
here, the two V numbers are defined as

Vz(()lko) = (U2 - W%)llz = akO(SrZMrZ - 8rlpll‘('rlp)l/z’
(31a)
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FIG. 4. Variation of an SP eigenmode’s effective index n.¢ and normalized power P with the reduced slab thickness ak( in a generalized
LH slab waveguide (case II: n,>n;>|n,|, as indicated by the shaded background). In all cases, it is assumed that £,=2, u,=1.2. (a), (b) n
and P variation for 0,=1.7, o,=1.1, p,=1.8, p,=1.2. (c), (d) Variations for 0,=1.2, 0,=0.9, p,=0.8, p,=1.6. (¢), (f) Variations for o,
=09, 0,=12, p,=1.1, p,=1.1. (g), (h) Variations for ¢,=0.7, 0,=1.6, p,=0.71, p,=1.7. (i), (j) Variations for 0,=0.7, 0,=2.7, p,
=04, p,=5.8. (k), () Variations for ¢,=0.7, 5,=2.7, p,=0.85, p,=3.5.
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VS(akO) = (Wg - U2)1/2 = akO(srlplu‘rlp - 8,3,&,.3)1/2,
(31b)

with p,p,>1>0.,0, used in the remaining analysis. Ac-

cordingly, the b and ¢ ratios take the form

U / 2 _ 1 172
blney) = - = [—("eff ) ] : (32)
V2 pspu_ 1
\% 1= 172
Vs (ﬂ) , 33)
V2 pap,u_ 1

obeying the restrictions »>1 and > 0. Once more, the gen-
eral form of Eq. (19) and the solution conditions of Eq. (20)
remain the same, but now W,=V,(b>—1)"2, W;=V,(b?
+2)12, X(b)=a bl (B*+12)" and Y(b)=p,b/(b*~1)"2. By
letting X(b) and Y(b) fulfill the aforesaid conditions, the fol-
lowing four distinct situations arise depending on the permit-
tivity profile.

The first situation occurs for {o,>1 and p,=1}. If p,p,,
< (o‘ﬁ—ascﬂ)/(oi— 1), the allowable range of values for b is

b>b,, where
l—o.o 12
by,= L } . (34)
’ [(pspﬂ—l)(oi—l)

We see from Figs. 5(a) and 5(b) that a single eigenmode
exists, which is backward propagating and has no cutoff. For
large core thickness, the SPP characteristic equation at the
1-3 interface is recovered. The other interface would not sup-
port a SPP, if isolated. In the case psp#>(o€—crgaﬁ)/(o§
—1), it is seen from Figs. 5(c) and 5(d) that two SPP eigen-
modes can exist; both have no node in the inner layer. The
first one, which is forward propagating, has a low cutoff
point at b=1 and a high cutoff, where it degenerates into the
second SPP. This eigenmode is backward propagating having
only an upper cutoff.

The second situation is described by {o,>1 and p,<1}.
For p.p, < (of—crgcrﬂ)/(ai— 1), it proves necessary to exam-
ine the intervals that the ratio p, belong to. When p, € A,
with A={[(ps<ps,l) U(Pg>Pe,2)]m (0<p8< 1)} and
Pe.1» Pe being the two roots of the polynomial

(p,) = (1 - 0,0,)p: + pu(os— Dp,—[(1 - o)
+(1-ay0,)]. (35)

it is b; > b,, where

( 1 )1/2
bi=\——] ., 36
1 l—pﬁ ( )

and it can be shown that b is in the range b, <<b<b,. The
corresponding  dispersion diagrams are illustrated in
Figs. 5(e) and 5(f). We see that two nodeless eigenmodes
exist. The first one has only a low cutoff, is backward propa-
gating and concentrates asymptotically at the 1-3 interface.
The second SPP has only a low cutoff, is forward propagat-
ing and concentrates at the 1-2 interface for relatively large
core thicknesses. For p,eA’, where A’'={(p,;<p,
<p.2)N(0<p,<1)}, it is b; <b, and again two SPP eigen-
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modes are shown to exist in Figs. 5(g) and 5(h). Compared to
the previous two eigenmodes, the cutoff characteristics and
the classification remain the same, but the order of the inter-
faces to which these SPPs concentrate is reversed. Also, both
SPPs now exhibit phase reversal. For p.p,> (o‘i
—o-saﬂ)/(oﬁ— 1), we have 1 <b<b; and the dispersion dia-
grams are shown in Figs. 5(i) and 5(j). In this case, three
distinct solutions of Eq. (11) are found; the H-field intensity
for all of them has no node in the core region. The first one,
which corresponds to positive total power P, has a low cutoff
point at b=1 and an upper cutoff, where it degenerates into
the second SPP. This eigenmode has also a lower and a
higher cutoff, but is backward propagating. The third branch
shows only a low cutoff, corresponds to positive P and,
asymptotically, degenerates into the isolated 1-2 interface
solution. This situation is the only one where two double
mode-degeneracy points occur.

In the third situation, which occurs for {o,<1 and p,
> 1}, there are no solutions to Eq. (19) for any b > 1; hence,
the slab waveguide does not support SPPs.

The final situation occurs for {o,<1 and p,<1} and the
corresponding dispersion diagrams are shown in Figs. 5(k)
and 5(1). From the solution constraints of Eq. (20), we find
that b>b,. A single SPP exists, which does not have cutoff,
is forward propagating, exhibits phase reversal and concen-
trates asymptotically at the 1-2 media interface. It should be
noted that, for the chosen values of o, and O the isolated
1-3 interface does not support an SPP.

IV. CONCLUSIONS

We have presented a systematic investigation of all solu-
tions of the involved characteristic equation giving the
p-polarized surface plasmon polariton eigenmodes in gener-
alized slab waveguides, comprised of a negative refractive
index core that is bounded by two different positive-index
media. Following an analytical methodology, all SPPs are
classified as forward or backward propagating, depending on
the sign of the associated power flow. Contrary to the case of
thin metallic films surrounded by two different dielectrics,
where the SPPs depend solely on the permittivity distribu-
tion, we have shown analytically that, for the corresponding
left-handed structures considered here, the refractive index
distribution must also be included in the analysis.

In particular, if the absolute value of the core refractive
index is greater than those of the surrounding dielectrics, we
identified ten TM SPP eigenmodes; six of these solutions are
backward propagating. Nine solutions existed if the core in-
dex has the smallest absolute value; one of these SPPs has
antiparallel phase and group velocities. In the final case,
where the core index value is between those of the claddings,
11 SPP eigenmodes were identified; five of these solutions
have backward power flow in relation to the direction of the
phase velocity. The total number of 30 SPP eigenmodes,
which is significantly higher than the six SPPs that were
recognized in similar metallic film geometries,'” is a direct
result of the presence of negative magnetic permeability in
the LH structures that provides additional degrees of free-
dom in the definition of the V numbers.
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The analytical treatment revealed features not observed
before, such as the occurrence of “supermodes” in the case
of a violation of the isolated interface condition, strong field
enhancement and opening of gaps in the geometric disper-
sion diagrams owing to the asymmetry, and coexistence of
three eigenmodes with double mode-degeneracy points oc-
curring twice. We also demonstrated that the group velocity
of the investigated slow waves could be decreased down to
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zero or become negative, by adjusting suitably the thickness
of the core.
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